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There is a global industry built upon the production of “bioinoculants,” which include both

bacteria and fungi. The recent increase in bioinoculant uptake by land users coincides

with a drive for more sustainable land use practices. But are bioinoculants sustainable?

These microbes are believed to improve plant performance, but knowledge of their effect

on resident microbial communities is scant. Without a clear understanding of how they

affect soil microbial communities (SMC), their utility is unclear. To assess how different

inoculation practices may affect bioinoculant effects on SMC, we surveyed the existing

literature. Our results show that bioinoculants significantly affect soil microbial diversity

and that these effects are mediated by inoculant type, diversity, and disturbance regime.

Further, these changes to soil microbes affect plant outcomes. Knowledge that these

products may influence crop performance indirectly through changes to soil microbial

diversity attests to the importance of considering the soil microbiome when assessing

both bioinoculant efficacy and threats to soil ecosystems.

Keywords: microbial diversity, bacteria, fungi, plant performance, co-inoculation, disturbance, biofertilizer

INTRODUCTION

Bioinoculants are soil additives composed primarily of fungal and/or bacterial isolates, and
occasionally contain other abiotic additives (i.e., nutrients, or inorganic/organic carriers)
(Figure 1). They are deliberately applied to soil or plants to improve plant nutrient status (Kang
et al., 2014; Singh et al., 2019) especially where local soil microbial activity has been reduced by
anthropogenic activity (Ohsowski et al., 2012; Berruti et al., 2017), heavymetal (Ahemad, 2019) and
pesticide pollution (Verma et al., 2014), and biocontrol of pathogens (Wu et al., 2017) (Figure 1).

While questions remain about the use of these products (Kokkoris et al., 2019a; Thomsen
et al., 2021), their effects in natural ecosystems including their invasiveness and interactions
with the indigenous soil microbes have received little attention (Trabelsi and Mhamdi, 2013;
Ambrosini et al., 2016; Hart et al., 2017). Many studies include information about soil microbial
communities (SMC) post-inoculation, but there is little consensus on the effect of inoculants
on SMC diversity. For example, inoculation with fungal inoculants can decrease (Koch et al.,
2011; Symanczik et al., 2015; Islam et al., 2021), increase (Albertsen et al., 2006), or have
no effect on resident fungal diversity (Antunes et al., 2009; Jin et al., 2013; Werner et al.,
2014). This inconsistency also exists for bacterial inoculants; for example, studies found no
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FIGURE 1 | Plants interact with a plethora of rhizosphere and endophytic

microbes. These microbes, mainly bacteria and fungi, can positively affect

plant development and performance, especially under abiotic and biotic

stressful conditions. (A) Phytostimulation, which is the direct stimulation of the

plant growth via the expression of phytohormones as seen with

phytohormones as seen with several species from the Bacillus (Singh et al.,

2019) and Pseudomonas genus (Kumari et al., 2016). (B) Accession of

essential nutrients by acting as biofertilizers, as seen with the nitrogen-fixing

and phosphate-solubilizing bacteria or the mycorrhizal fungi, (C) Defense

against herbivory and pathogens by acting as biological control agents, such

as the fungi Trichoderma (Elad, 2000), Penicillium (Rani et al., 2007), or the

bacterial genus Bacillus (Pérez-García et al., 2011). In an attempt to harness

these benefits, propagules are applied intentionally in the soil, roots, or seeds.

difference in resident bacterial communities post bacterial
inoculation (Lottmann et al., 2000; Piromyou et al., 2011;
Chowdhury et al., 2013) while other studies showed bacterial
inoculants increased (Gupta et al., 2014; Pang et al., 2017; Dong
et al., 2019) and decreased bacterial diversity (Zhang et al., 2010).

A framework allowing producers to make informed decisions
surrounding bioinoculant use is needed. In order to understand
how bioinoculants affect SMC and plant hosts under different
conditions, we identified six questions to understand the
potential for inoculants to influence SMC.

Do Bioinoculants Affect Soil Microbial
Communities?
Inoculation may affect SMC multiple ways. If the bioinoculant
establishes, SMC may increase, at least by one taxon. While
studies exist showing that bioinoculants can establish (Pellegrino
et al., 2012; Sýkorová et al., 2012), given the complexity and
diversity of most soil ecosystems, it may not be possible to
determine small changes in species richness as result of our
ability to measure small changes in SMC. Beyond additive
effects, inoculation may increase biodiversity by outcompeting
dominant taxa, thereby facilitating competitive release (Hardin,
1960; Mawarda et al., 2020). Alternatively, an inoculant may
promote the colonization of taxa already present in the species

pool if its establishment increases resource availability (Kang
et al., 2014; Singh et al., 2019) or if it ameliorates stress (Irshad
et al., 2020; Vahter et al., 2020). Conversely, inoculation may
reduce microbial diversity if the inoculant becomes dominant
and suppresses native taxa (Gomes et al., 2005; Janoušková et al.,
2017) but the conditions under which this may occur are not
yet known.

Do Fungal and Bacterial Inoculants Have
Different Effects on SMC?
It may be that resident fungal communities are inherently more
susceptible to changes in community structure post-inoculation.
First, fungal communities are typically less diverse than bacterial
communities (Li et al., 2016; Wang et al., 2018; Liu et al.,
2020), which may predispose them to perturbation by an invader
(Knops et al., 1999; Stachowicz et al., 1999; Naeem et al.,
2003). Additionally, the superior dispersal ability of bacteria
compared to fungi (Schmidt et al., 2014; Ma et al., 2017;
Vannette et al., 2020) is more likely to create cosmopolitan
bacterial communities that may already contain similar or closely
related taxa to the inoculants, reducing the possibility for intense
competition (Sommaruga and Casamayor, 2009; O’Brien et al.,
2016).

Does Inoculum Diversity Affect SMC
Response?
The diversity of the bioinoculant consortia may determine
impacts on resident SMC. Inoculants including more than one
taxon may increase the likelihood that one of the isolates is able
to establish in the new environment. Studies show a consortium
has a greater effect on resident microbial diversity than single
inoculum (Anandaraj and Leema Rose Delapierre, 2010; Bharti
et al., 2016; Ju et al., 2019). Still, others show that a single
inoculant is more effective (Lladó et al., 2012).

Does Disturbance Regime Affect
Bioinoculant Effects on SMC?
Inoculants in disturbed systems (i.e., agricultural settings) may
have a greater effect on resident microbes. The system may be
depauperated of its soil microbes by disturbance, increasing the
likelihood of bioinoculant establishment (Gomes et al., 2005;
Antunes et al., 2009). Soil disturbance may put bioinoculants
on even footing with residents as all may be required to re-
establish from propagules (Ketola et al., 2017; Albright et al.,
2020). Commercial bioinoculant establishment may be further
enhanced in disturbed sites by virtue of the manner in which
they are produced, such as highly artificial, in vitro production
systems. Industrial conditions such as these may impose selective
pressures on the bioinoculants for a more ruderal life history
(Kokkoris et al., 2019b). Such conditions may promote microbes
that are more tolerant to physical disturbance (Jack et al., 2021).
If so, such disturbance tolerant bioinoculants may have more
pronounced effects on residents.
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Does Experiment Setting Affect SMC
Response to Bioinoculants?
Inoculation effects in greenhouse studies may be more
pronounced than under field inoculations simply because
bioinoculant establishment may be enhanced in greenhouse.
Greenhouse studies report greater bioinoculant establishment
(Lekberg and Koide, 2005; Martínez-Viveros et al., 2010)
likely because there are fewer factors inhibiting establishment.
Additionally, greenhouse studies often have one plant per pot
(Pallez et al., 2002; Kawaletz et al., 2014), which might encourage
a symbiosis that may occur under natural, field conditions.
Further, greenhouse soil is typically sterilized, allowing for easy
bioinoculant establishment (Martínez-Viveros et al., 2010).
Thus, changes to SMC may be more pronounced simply due to
increased likelihood of bioinoculant establishment.

Does Inoculation Affect Plant
Performance?
Regardless of unintended consequences on SMC, the goal of
inoculation is to improve plant performance. However, soil
microbial diversity is also an important determinant of plant
performance and productivity (van der Heijden et al., 1998;
Mangan et al., 2010; Bardgett and Van Der Putten, 2014).
Thus, if bioinoculant use results in a change to resident soil
diversity, plant performance may be affected indirectly by the
bioinoculant. This could reduce plant performance/productivity
if SMC diversity decreases (Chen et al., 2020) or, it may enhance
plant performance if SMC diversity is enhanced (van der Heijden
et al., 1998). Alternatively, changes to plant performance could
be due to direct effects of the bioinoculant. For example, the
same isolate of fungi can be beneficial on some plant genotypes
(Oliveira et al., 2017; Garg and Singh, 2018; Le Pioufle et al.,
2019), negative on others (Janoušková et al., 2013; Symanczik
et al., 2015; Loján et al., 2017), or have no effect on yet others
(Rosa et al., 2020). This is particularly true for microbes with
strict host requirements, such as rhizobia (Rebah et al., 2002;
Sanz-sáez et al., 2015; Adissie et al., 2020).Whatever the outcome,
the connection between plant performance and SMC diversity is
paramount to ecosystem stability and resilience.

In this study, we asked whether there is evidence for SMC
changes following bioinoculant use. We surveyed the literature
for all studies reporting SMC response to an inoculation event.
We predicted that SMC response would depend on the type of
community being assayed (fungal or bacterial), the identity of
the bioinoculant, the level of disturbance and the response of the
target plant to inoculation.

METHODS

Our approach was based on standard protocols described in
Moher et al. (2015) and Gurevitch et al. (2018).

Literature Search
To answer the question of whether bioinoculants influence SMC,
scientific articles were collected from Web of Science (Web of
Science [v.5.35], 2021) in June of 2019 using the search terms

(Microb∗ AND Inocul∗ NOT pesticid∗ NOT insecticid∗ AND
soil AND bacteri∗ AND fung∗ AND communit∗ NOT review∗)
which could be within the title or the abstract of the paper. This
returned 445 papers.

For analysis purposes, we included only studies that measured
changes in the diversity of bacterial or fungal communities. We
included multiple cases from individual studies if those cases
represented either a different response variables (i.e., bacterial
and fungal diversity), different bioinoculants, or different
conditions (e.g., disturbed vs. undisturbed). In all cases, where
responses were measured as a time series, we only used the
final measurement. We also excluded other cases based on
specific modifiers. For bioinoculant type, we included only cases
where either fungi or bacteria were inoculated. We included
inoculants for all purposes, including growth promotion and
biocontrol. Inoculants containing both bacteria and fungi, or
other microbes were too rare to allow reliable inference. For
disturbance, we classified all disturbances as either chemical
or physical. These included both agricultural and industrial
disturbances. Disturbances that could not be classified as such
were excluded. For experimental system, we excluded all cases
that could not be classified as field, greenhouse/growth chamber,
or laboratorymicrocosm. This resulted in a total of 243 cases. Not
all studies included plants and plant responses were measured
variously among studies. For analyses including plant response
data, we include only studies where plant responses could be
plausibly associated with potential fitness (e.g., survival, growth,
yield, defense, etc.). This limited the number of cases to 143.

Statistical Analysis
To determine how bioinoculants affect SMC, we analyzed the
data from the systematic review in two stages. First, we tested
whether the bioinoculants caused a significant change in the
diversity of bacterial or fungal communities. Second, we tested
whether the changes were more likely to be positive or negative
for those studies where a significant effect was detected. In
both cases, the response variables were binary. The statistical
models used differed depending on whether moderators were
included. In absence of moderators, we used chi-square tests
to determine whether significant responses were more likely
than expected by chance. When moderators were included,
we used binomially distributed generalized linear models that
included the moderator as a factor. We use these models, rather
than more typical meta-analysis models, because we did not
include estimates of effect size or of variation in the analysis
due variation in methods used to estimate changes to SMC,
which included different diversity metrics. Separate models were
run for bacterial and fungal communities because fungal studies
were much less prevalent, which restricted our ability to include
certain modifiers. We also ran separate models to test the effect of
each modifier as data from certain modifiers was unavailable for
some studies. These results, however, did not differ from models
where all modifiers were included (Supplementary Tables 1–3).
For bacteria, we included bioinoculant type (bacterial or
fungal), inoculum diversity (single species or mixed), disturbance
(chemical, physical, or undisturbed), and experimental system
(field, greenhouse, or microcosm). For fungi, we were only able to
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include bioinoculant type and experimental system as modifiers.
Most analyses used base R (R Core Team, 2021); however, we
used the package “emmeans” (Lenth, 2021) to test for pairwise
differences among categories of disturbance and experimental
setting when the main effects was significant.

In addition tomodels testing bioinoculant effects onmicrobial
diversity, we tested whether changes in either fungal or bacterial
diversity were associated with changes in plant performance, with
fungi and bacteria analyzed separately as before. In these cases,
the response variables were ordinal: either a reduction in plant
performance, no effect, or an increase in plant performance.
Thus, we used ordinal logistic regression in the R package
“ordinal” (Christensen, 2019) to account for the data type. In
these models, we used whether bacterial or fungal diversity
changed or whether that change was positive or negative as the
factors in the model.

RESULTS

Do Microbial Inoculants Affect Microbial
Communities?
Fungi Response

Fungal diversity was not more likely to change following
inoculation (Figure 2A). That is, we observed equal number
of instances showing change and no change (χ² = 0, P =

1). Among cases where fungal diversity did change, it was
more likely to increase than decrease following inoculation, with
fungal diversity increasing in 23 studies vs. eight where diversity
decreased (χ²= 7.2581, P = 0.007058).

Bacteria Response

Bacteria diversity wasmore likely to change following inoculation
(Figure 2B) That is, we observed more instances showing
diversity increase (114) compared to no change (67) and no
change (χ² = 12.20, P < 0.001). Among studies where change
was observed, bacteria diversity was more likely to increase, with

FIGURE 2 | The effect of inoculation on the native (A) fungal and (B) bacterial communities. The inner rings demonstrate whether inoculation affects the native

microbial communities’ diversity. The outer rings demonstrate the directional change on SMC diversity (increase vs. decrease) in those samples that were affected by

inoculation.

85 studies reporting increases vs. 29 where bacterial diversity
decreased (χ²= 27.51, P = P < 0.001).

Do Fungal and Bacterial Inoculants Have
Different Effects on SMC?
Fungi Response

We did not detect an effect of inoculum type on fungal
diversity changes (Figure 3A). That is, no more studies
showed fungal diversity changes when bacterial inoculants
were used (44%) compared to fungal inoculants (43%) (F
= 2.478, P = 0.120). Among cases where diversity changed
following inoculation (Figure 3B), inoculum type did not affect
the direction of the change, with 79% of studies showing
increased diversity for bacterial inoculants, vs. 70% for fungal
inoculants, but this difference was not significant (F = 0.24,
P = 0.620).

Bacteria Response

Wedid not detect an effect of inoculum type on bacterial diversity
changes (Figure 4A). That is, no more studies showed bacterial
diversity changes when bacterial inoculants were used (61%)
compared to fungal inoculants (68%) (F = 0.747, P = 0.3885).
Among cases where bacterial diversity changed (Figure 4B),
bacterial inoculants increased bacterial diversity in only 66% of
studies, whereas fungal inoculants increased bacterial diversity in
94% of studies (F = 11.58, P = 0.0009248).

Does Inoculum Diversity Affect SMC
Response?
Bacteria Response

Bacterial diversity was more likely to change when using a
mixed inoculum (79% of cases) vs. a single species inoculum
(59% of cases) (F = 5.144, P = 0.0245). Among cases where
bacterial diversity changed, bacterial diversity was more likely
to increase regardless of inoculum type, but more so for single
species inoculum (89% studies showed increases for single species
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FIGURE 3 | Effect of bacterial and fungal inoculants on the native (A) fungal and (B) bacterial communities. (A1,B1) The inner rings demonstrate the inoculant identity

(bacterial or fungal). The outer rings demonstrate the proportion of studies that found a change or did not find a change on the resident fungal and bacterial

communities. (A2,B2) Boxed pie charts demonstrate the directional community changes per inoculant type (blue = fungal inoculants and red = bacterial inoculant) for

the studies that showed SMC changes following inoculation.

inocula compared to 70% of cases usingmixed inocula) (F= 4.27,
P = 0.04119).

There were too few fungi studies with mixed inoculum to test
the effect of inoculum diversity.

Does Disturbance Regime Affect
Bioinoculant Effects on SMC?
Bacteria Response

While the incidence of diversity changes associated with
disturbance was higher for chemical (64%) and physical
disturbance (81%) compared to no disturbance, these differences
were not statistically significant (F = 1.0475, P = 0.353)
(Figure 5). When we looked at only the cases where diversity
changes were detected (Figure 4B), inoculation increased
bacterial diversity in 80 and 77% of the cases for no disturbance
and chemical disturbance, but decreased bacterial diversity in
89% samples experiencing physical disturbance (F = 8.7935, P
= 0.0002851). Whereas, there was no difference in the response
between no disturbance and chemical disturbance (z ratio =

0.359, P = 0.9313), physical disturbance caused significant

reductions in bacterial diversity compared to no disturbance (z
ratio = 3.202, P = 0.0039), and chemical diversity (z ratio =

2.808, P = 0.0138).
There were too few fungi studies with mixed inoculum to test

the effect of inoculum diversity.

Does Experiment Setting Affect SMC
Response to Bioinoculants?
Fungi Response

Inoculation changed fungal diversity more often in greenhouse
(81%) compared to field (54%) and microcosms (22%) (F =

8.8211, P = 0.000445) (Figure 6). While there was no statistical
difference in the effect among Field and Greenhouse studies (z
ratio = −1.721, P = 0.1972) or Field and Microcosm studies (z
ratio = 1.944, P = 0.1265), greenhouse and microcosm studies
were statistically different (z ratio = 3.24, P = 0.0004). When
we looked at only those cases where diversity changed, diversity
generally increased. There were no significant differences among
settings (F= 0.6109, P= 0.441) despite equal numbers of positive
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FIGURE 4 | The effect of inoculum diversity on the resident bacterial communities. (A) The inner rings demonstrates bioinoculant diversity category (single species vs.

mixed species). The outer ring demonstrates the proportion of studies that found on the resident bacterial community diversity. (B) Boxed pie chart demonstrates the

directional community changes (increased vs. decline) per inoculant type (blue = single species inoculants and red = mixed species inoculants) for the studies that

showed SMC changes following inoculation.

FIGURE 5 | The effect of inoculation on the resident bacterial communities in the presence of disturbance. (A) The inner ring demonstrates the disturbance type

(physical disturbance, chemical disturbance, and no disturbance). The outer rings demonstrates the proportion of studies that showed bacterial community changes

following inoculation. (B) Boxed pie chart demonstrates the directional community changes (increased vs. decline) per disturbance type for the studies that showed

SMC changes following inoculation.
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FIGURE 6 | The role of the environment to the inoculation effect on the native (A) fungal and (B) bacterial communities. (A1,B1) The inner pies demonstrate the

environment category (blue = microcosm red = field and green = greenhouse). The outer rings demonstrate the number of studies that found a change or did not find

a change on the (A1) native fungal and on the (B1) native bacterial community diversity. (A2,B2) Boxed pie charts demonstrate the directional community changes

(increased vs. decline = outer ring) per environment category (blue = microcosm red = field and green = greenhouse) for the studies that showed SMC changes

following inoculation.

and negative cases in microcosms, potentially due to the small
number of microcosm studies (N = 6).

Bacteria Response

Experimental setting (Greenhouse/microcosm/field) did not
change the effect of inoculation on bacterial diversity (F = 0.310,
P = 0.740), with all scenarios showing diversity changes in
approximately 62% of studies.

Does Inoculation Affect Plant
Performance?
Fungi

Plant performance changed in response to fungal inoculation
in 75% of cases, but this was not dependent on whether
fungal diversity changed (F = 0.6498, P = 0.4292) (Figure 7A).
Similarly, the direction of fungal diversity change was not
strongly associated with plant responses (F = 3.1714, P =

0.0966). The lack of significant associations may be attributable
to the lack of negative plant responses and small number of

neutral plant responses to fungal inoculation (N = 7; N = 4
when considering cases where fungal diversity changed). When
we looked only at cases where fungal diversity changed, a
similar pattern emerged for both fungal diversity decreases and
increases. The most common response was increased fungal
diversity and positive plant response (F = 3.1714, P = 0.0966).

Bacteria

For bacteria, 88% of studies showed negative plant responses
were associated with bacterial diversity changes, compared with
only 61% of plants showing positive changes, and 48% of plants
showing no effects of inoculation (F = 3.892, P = 0.02198)
(Figure 7B). When we looked only at cases where bacterial
diversity changed, the most common response was increased
bacterial diversity and positive plant response (F = 5.5004, P
= 0.02189). However, in this case plants showing decreased
response were more commonly associated with decreases in
bacterial diversity.
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FIGURE 7 | The effect of the native (A) fungal and (B) bacterial community changes in plant performance post inoculation. (A1,B1) The inner rings demonstrate plant

response (positive, negative, or no response). The outer rings demonstrate the proportion of studies that showed SMC changes following inoculation (A1) resident

fungal and (B1) resident bacterial community. (A2,B2) Boxed pie charts demonstrate the directional community changes (increased vs. decline) per environment

category (microcosm, field, or greenhouse) for the studies that showed SMC changes following inoculation.

DISCUSSION

Do Microbial Inoculants Affect Microbial
Communities?
Inoculation affected SMC but fungal and bacterial communities
responded differently to inoculation. Fungal communities were
equally likely to change or not following inoculation. This is
supported by the literature as there is evidence for fungal
communities being resistant (Aung et al., 2013; Werner et al.,
2014), resilient (Antunes et al., 2009; Karpouzas et al., 2011), and
susceptible to invasion (Schmidt et al., 2012; Symanczik et al.,
2015; Janoušková et al., 2017).

Bacterial communities, in contrast, were more likely show
increased diversity following inoculation. Basic differences
between bacterial and fungal ecology may play a role in
this difference. There may simply be more, unestablished
taxa in bacterial communities, which, in contrast to fungi,

are typically not dispersal limited (Schmidt et al., 2014;
Ma et al., 2018; Vannette et al., 2020). This means that
perturbations via inoculation may allow for the recruitment
of heretofore unestablished bacterial taxa. Similarly, differences
in reproduction (i.e., sexuality is present in fungi but not
bacteria) may mean that fungi are not able to capitalize upon
altered conditions as quickly as bacteria (Rousk and Bååth, 2011;
Kirchman, 2012). Additionally, faster growth rates and larger
populations sizes of bacteria compared to fungi mean there may
be more opportunity for novel mutations able to quickly adapt
to changes to the environment (Hibbing et al., 2010). As well,
soil fungal communities tend to be more closely aligned with
plant communities both for mutualists (Cassman et al., 2016;
Zhang et al., 2021) and saprobes (Francioli et al., 2020), thus we
may expect less change in their communities without concurrent
changes to vegetation (van der Heijden et al., 1998; Beck et al.,
2020).
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Do Fungal and Bacterial Inoculants Have
Different Effects on SMC?
Fungal communities were equally affected by fungal and
bacterial inoculants (Figure 3A). It may be that inoculation
itself, either due to the physical disruption of the soil, or the
co-amendment with carriers and nutrients is drives changes
to fungal communities. There is ample evidence that soil
disturbance (Rodriguez-Ramos et al., 2021) and soil amendments
(Ezawa et al., 2002; Lucas et al., 2014) can increase fungal
diversity. Whatever the mechanism, these results suggest that
inoculant identity (bacterial vs. fungal) is not an important factor
in determining inoculation effects on SMC.

Similarly, bacterial residents were likely to be affected by
bacterial and fungal inoculants (Figure 3B). In this case, however,
there were directional changes associated with the different
bioinoculants. Fungal inoculation led to increased bacterial
diversity, which supports the idea that fungal inoculants act as a
novel resource. There are many studies showing the hyphosphere
as hosting a diverse community of bacteria, both in and on
the mycelia network (Marschner and Baumann, 2003; Rillig
et al., 2006). For example, Scheublin et al. (2010) showed that
there are distinct bacterial communities that adhere to hyphal
surfaces which differ from those found in the surrounding soil.
These hyphal communicates were enriched with members of the
Oxalobacerteaceae. Bacterial inoculants, conversely, seem to have
less of an effect on bacterial communities despite the addition of
new bacterial species. This suggests that bacterial inoculants may
not alter the carrying capacity of an environment sufficiently to
allow for the establishment of new taxa.

Does Inoculum Diversity Affect SMC
Diversity?
Single taxon inoculants had the biggest effect on bacterial
communities (Figure 3). This is contrary to our prediction
that more diverse inoculants should have a greater chance of
containing a taxon likely to establish (Huston, 1997; Tilman,
1997; Hooper et al., 2005). It may be that competition among
the taxa in the mixed formulations may inhibit colonization
of novel resident taxa, given that most bioinoculant taxa are
chosen or are grown/incubated before inoculation in conditions
that experience little disturbance, competition, or stress which
might inadvertently select for ruderal growth habits (Fortin et al.,
2005; Litchman, 2010; Van Elsas et al., 2012). Such differences
in microbial life history strategies can manifest as differences in
SMC. For example, Leff et al. (2015) showed that soil bacterial and
fungal communities differed consistently across grassland sites in
response to nutrient addition.

It is possible that interactions among consortia members
may inhibit bioinoculant establishment. Consortia are typically
formulated based on individual taxon effects (Sarma et al., 2015;
Niu et al., 2020). This approach may result in bioinoculants
with decreased effects (Sarma et al., 2015), and interactions
among consortia members may inhibit each other (Haas and
Défago, 2005). Clearly more work is needed to understand how
interactions among bioinoculant consortia affect establishment,
and interactions with resident SMC.

Does Disturbance Regime Affect
Bioinoculant Effects?
Because soil disturbance is known to be associated with changes
in bacterial (Wang et al., 2010; Silva et al., 2013; Sengupta
and Dick, 2015; Zhang et al., 2019) and fungal (Schnoor et al.,
2011; Li et al., 2012; Chen et al., 2014) communities, we
predicted inoculation would have a greater impact on microbial
communities that had been subjected to soil disturbance.
While there were too few studies looking at fungal community
responses, we found that inoculation with chemical disturbance
led to increased bacterial diversity, but inoculation with physical
disturbance decreased bacterial diversity.

In our study, soil disturbance increased the likelihood that
inoculation would suppress resident bacterial communities. This
may be in part due to physical disturbance destabilizing the
resident diversity via changes in abiotic conditions (Schimel
et al., 2007; Wang et al., 2016, 2017; Naylor and Coleman-Derr,
2018). This decrease in diversity might enhance the chances
of establishment of a bioinoculant (Litchman, 2010; Van Elsas
et al., 2012; Yang et al., 2017) which on account of their superior
competitive abilities (Litchman, 2010; Van Elsas et al., 2012;
Kaminsky et al., 2019) might allow for further effects on the
already weakened resident community.

Does Experimental Setting Affect SMC
Response to Bioinoculants?
Because greenhouse studies do not accurately represent soil
ecosystems, some variation in SMC response to inoculation could
be due to differences between greenhouse and field studies. We
predicted diversity changes would be enhanced in greenhouse
studies vs. field because there is evidence that simpler systems are
more invasible (Stachowicz et al., 1999; Bonanomi et al., 2014).
In our study, inoculation increased fungal diversity more often
in greenhouse studies compared to field and microcosm studies,
but only field and microcosm studies were statistically different.
This was surprising as we expected microcosms to represent
conditions intermediate to field and greenhouse studies, and
many of them lacked plants. It may be that microcosms studies
aremore closely aligned with greenhouse studies in terms of SMC
as they typically must disturb soil (e.g., autoclaved or sieved).

For bacterial communities, study location (greenhouse vs.
field) had no effect on changes to their communities. This makes
sense in that bacterial communities are organized at a smaller
spatial scale than fungal communities (Coleman and Crossloey,
1996) so it may be easier to approximate field conditions in
greenhouse than for fungal communities, which vary greatly their
spatial resolution (Peay et al., 2008).

Does Inoculation Affect Plant
Performance?
Positive plant outcomes were more likely to be associated with
changes in fungal diversity—but there were no studies showing
negative plant outcomes to fungal inoculation (Figure 7A). This
is surprising because the literature has many examples of fungal
inoculants suppressing plant performance (Verbruggen et al.,
2012; Janoušková et al., 2013). While the number of studies is
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too low to make definitive conclusions, it may be that fungal
inoculants can suppress plants directly, rather than through
concomitant changes in soil fungal communities. Studies have
shown this in artificial conditions (Kokkoris et al., 2019a), but
this remains to be robustly tested in natural systems.

Positive plant responses were more often associated with
increase fungal diversity. This makes sense in that there is a
considerable literature showing a positive relationship between
fungal species richness and plant biodiversity (van der Heijden
et al., 1998; Klironomos et al., 2000; Hiiesalu et al., 2014) and
productivity (van der Heijden et al., 1998, 2008; Klironomos
et al., 2000; Jonsson et al., 2001; Maherali and Klironomos,
2007).

This association was not true of bacterial inoculation studies.
Negative plant performance was most often negative when
inoculation was associated with bacterial diversity changes
(Figure 7B). Among all cases of bacterial community change in
response to inoculation, plants associated with increased bacterial
diversity tended to respond positively to inoculation (Zuppinger-
Dingley et al., 2014; Kolton et al., 2017; Laforest-Lapointe et al.,
2017), while plants associated with decreased bacterial diversity
tended to respond negatively. Which does align with what
multiple studies have found in that reductions in soil microbial
diversity lead to reduced plant diversity (van der Heijden et al.,
1998; Wagg et al., 2014) and productivity (van der Heijden et al.,
1998; Chen et al., 2020).

Both of these results support our prediction that inoculations
affect plant performance indirectly via concomitant changes to
resident communities. This may explain why plant response
to bioinoculants is not always positive, despite inoculants
often undergoing rigorous testing during development. Most
bioinoculants are developed and marketed to affect target hosts
directly, either by establishing a functional symbiosis with the
host itself, or by reducing stress (Khan et al., 2011; Petriccione
et al., 2013; Kuan et al., 2016; Singh et al., 2019). Our results
suggest that inoculum development should include interactions
with resident communities in order to both create more robust
bioinoculants and guard against potential risks to resident SMC.

CONCLUSION

In this study, we asked whether there is evidence for SMC
changes following bioinoculant use. While it clear from our
analysis that inoculation changes SMC, there exists variation in
the degree and the direction of those changes. Based on our
results, we can say that bacterial communities may be more
sensitive to changes following inoculation, and that they tend to
increase in diversity following inoculation compared to fungal
communities. However, there are too few studies examining
changes to fungal communities that we cannot say with any
confidence how fungal communities respond to inoculation.

We can also say that inoculation accompanied by disturbance
tends to exacerbate inoculation effects, positive or negative.
This is particularly important for producers who might want to
consider the mode of inoculum delivery to either enhance or
reduce concurrent changes to SMC.

In a similar way, we might expect differences in soil chemistry
to also exacerbate inoculation effects. Unfortunately, studies
returned by our literature search did not consistently report
soil chemistry, so we could not evaluate this in our model.
Soil additives, including fertilizers, may exacerbate inoculant
effects on resident microbes. In general, fertilizers, whether
organic or inorganic, tend to decrease soil microbial diversity
by selecting for few, competitive species at the expense of
those more adapted to nutrient stress (Leff et al., 2015;
Francioli et al., 2016; Zhang et al., 2016). Nitrogen fertilizers,
for example, can reduce ectomycorrhizal activity (Treseder,
2004) and may restrict decomposer communities (Allison et al.,
2007; Kamaa et al., 2011) by altering plant carbon input.
Similarly, phosphorus can reduce root colonization (Wang et al.,
2017), abundance (Abbott and Robson, 1984; Treseder and
Allen, 2002), and diversity (Gosling et al., 2013) of arbuscular
mycorrhizal fungi.

Commercially produced bioinoculants may have a
competitive advantage over residents in conditions where
nutrients are not limiting, such as most agroecosystems
(Goulding et al., 2008). Inoculants are typically propagated
in a high nutrient environment (Bécard and Fortin, 1988;
Berruti et al., 2017) and display, rapid growth rates and
high reproduction rates (Kaminsky et al., 2019) and occupy
broad realized niches (Antunes et al., 2008). Thus, we might
expect inoculants to have more substantial effects on resident
communities especially considering both Niwa et al. (2018) and
Bender et al. (2019), suggested that an inoculant’s success is more
significant or more effective in conditions where the resident
fungal population was smaller, performing poorer, or had overall
lower diversity. Clearly, soil chemistry will be an important
aspect determining inoculation outcomes, and should be the
focus of future research.

Finally, our study suggests that plant response is dependent
on SMC response to inoculation. It may be impossible to
predict outcomes in plant performance based solely on the
action of the bioinoculant. Rather, changes to SMC will mediate
that response.

Our study did not differentiate among guilds of fungi and
bacterial in response to inoculation. It is likely that endophytes
respond differently to inoculation compared to free living
microbes. This may be important depending on the nature of the
bioinoculant (endophyte or free living). Further, due to sample
size, we were unable to discriminate among the various ways
SMC could change.We categorized changes as diversity increases
or decreases. However, changes due to species loss vs. changes
to evenness among taxa represent very different scenarios. It
will be important for future studies to qualify diversity changes
as well. Similarly, we did not distinguish among the various
methods used to calculate SMC diversity. It is possible that
differences in diversity estimates could affect the resolution of
our analysis; for example, studies that used high throughput
sequencing vs. morphotyping.

While our study marks an important starting place to
understand the relationship between microbial inoculants and
SMC,many questions remain unanswered.What is important for
future studies is to understand how the context of inoculation
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events affect SMC changes, and what these changes mean for
soil ecosystems.
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