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Abstract: Dielectric function representation by a variety of
polynomial spline functions provides a consistent and
efficient method for accurate modeling of the material
optical properties in the context of spectroscopic ellips-
ometry data interpretation. Splines as an elegant and
purely mathematical way for such modeling task were
introduced about three decades ago. In the following years
the use of splines in the area of ellipsometric data analysis
becamewidely utilized. The goal of this review is to provide
a self-contained presentation on the current status of the
dielectric function modeling by splines for advanced in-
dustrial ellipsometry users but, hopefully, it can be useful
for some scholarly users as well. It is also intended to
promote more extended recognition of the spline-based
modeling among optical metrology professionals. Here, a
brief description of different ways, – ordinary polynomials,
piecewise polynomials (splines), and B(asis)-spline
functions, – is presented to parameterize an arbitrary
function which can be used as an analytic representation
of the dielectric-function curves. A number of particular
polynomial-based models for the optical functions of
materials and how they may be used in applications are
also discussed. Particular attention is paid to different
concepts of the efficient and optimal spline construction.

Keywords: data analysis; dielectric function; optical
modeling; parameterization; spectroscopic ellipsometry;
spline functions.

1 Introduction

Spectroscopic ellipsometry (SE) is a non-destructive tech-
nique for fast and informative characterization of surfaces,

thin films and multilayer structures including not only the
film thicknesses but also the optical functions (yet, as of
old, often referred to as optical constants) aswell as surface
and interfacial roughness [1–3]. It is well known that the
optical properties of materials are related to the material
electronic structure which is, in fact, can be explicitly
affected by multiple factors and, therefore, these influ-
encing factors can be characterized based on the analysis
oof the measured optical properties. Thus, it is not sur-
prising that SE, which possesses a broad amount of
technlogical capabilities, has become so popular not only
in the labs around the globe but for routine process
monitoring and control in the modern nanoscale elec-
tronic and photonic manufacturing industries. In the era
of escalation of fabrication challenges and, therefore,
increasing complexity of ellipsometric applications, we
regularly face various complications in the analysis of
optical measurements and extraction of useful informa-
tion, especially in modern nanotechnology related ap-
plications. One of the primary reasons is that the SE, due
to its indirect nature, suffers an unwanted vulnerability to
almost always required optical modeling and dielectric
function parameterization.

In this connection, the typical complications encoun-
tered in ellipsometric data analysis involve an accurate
modeling of the complex dielectric function (DF) ε = ε1 − iε2
(or the complex index of refraction N = n − ik) of the ma-
terials contained in the samples under investigation.
Indeed, the DF (or the refractive index) has to be described
not only over the appropriate spectral range but also its
model should be flexible enough to take account of
numerous factors influencing the electronic structure of
materials used in nanoscale science and technology (as, for
instance, the process conditions, film thickness, composi-
tion, stress, defects, quantum effects, etc.).

There are several approaches [1–5] for an adequate DF
representation including (1) tabulated optical functions
which are often called “dispersion tables”, (2) certain
empirical dispersion formulae valid over a restricted
spectral interval (Cauchy, Sellmeier, Schott, Hartmann,
etc.), (3) oscillator-based optical functions developed
fromphysical principles (Lorentz, Drude, Gaussian, critical

*Corresponding author: Dmitriy V. Likhachev, GlobalFoundries
DresdenModuleOne LLC&Co. KG,Wilschdorfer Landstr. 101, D-01109
Dresden, Germany, E-mail: dmitriy.likhachev@globalfoundries.com.
https://orcid.org/0000-0002-9842-528X

Adv. Opt. Techn. 2022; 11(3–4): 93–115

https://doi.org/10.1515/aot-2022-0006
mailto:dmitriy.likhachev@globalfoundries.com
https://orcid.org/0000-0002-9842-528X


point, etc.), and (4) multi-component mixture of individual
components (effective medium approximation, EMA).

About three decades ago, an elegant and purely
mathematical approach to describe the optical functions
by various splines came to be recognized as a distinct,
useful and practical alternative. Formally, the splines
are piecewise polynomial functions of some degree
smoothly and continuously “glued” together at the joining
points, the abscissas of which are called “knots” or “break-
points”.1 Historically, the problemof best approximation of
a certain function (curve) or a set of data points has been
mainly examined by use of algebraic and trigonometric
polynomials. A spline approximation of complex curves
(and surfaces, in general) as a mathematical subject was
first introduced in the prominent work of Prof. Isaac Jacob
Schoenberg, the “Father of Splines”, in 1946 [6, 7], but has
become a popular tool in various branches of applied
mathematics and in the automotive and aircraft industries
only in the early 1960s. Thus, before the advent of high-
speed computers, neither spline advantage of combining
piecewise polynomials nor their good accuracy of approxi-
mationwere properly valued and,metaphorically speaking,
this approach has stayed in a “dormant” state for practical
applications for so many years, waiting for someone to
finally come up with a punch card. With the coming of the
computer era, splines became widely utilized not only in
approximation theory, numerical analysis, statistics, com-
puter graphics and geometric modeling but the potential of
splines is much greater and they are also used in different
engineering and scientific disciplines for describing
miscellaneous physical processes in mechanics, thermo-
and electrodynamics, atomic and molecular physics, signal
processing, etc.

Usually, in more mathematically-oriented texts, the
following primary categories for the spline applications are
declared:
(1) approximation of a function: for a certain given

continuous real-valued function f(x), defined on an
interval [a, b], find a simpler, or approximate, function

g(x) to minimize the deviation
⃒⃒⃒⃒⃒⃒
f − g

⃒⃒⃒⃒⃒⃒
(for instance,⃒⃒⃒⃒⃒⃒

f − g
⃒⃒⃒⃒⃒⃒ = max

x∈[a,b]
⃒⃒⃒
f(x) − g(x)⃒⃒⃒, the Chebyshev norm)

and quantitatively estimate the introduced error;
(2) interpolation of a discrete function: if function f(x) is

known at discrete values xi, then the interpolation
derives a continuous function g(x) which passes
through all the given data points xi and estimates g(x)
for arbitrary x, – the simplest case is a piecewise linear
interpolation of a given set of data points;

(3) smoothing and trending a data set (regression): if
function f(x) is defined by its discrete values with some
noise but it is known that f(x) possesses the property of
“smoothness”, then one can find an approximating
function g(x) for which the deviation f − g is minimal, –
such “data smoothing” can be used to help predict
trends.

However, the splines used in ellipsometric data analysis
can be conceptually assigned to a different category, which
we perhaps should simply call “spline representation of
the dielectric function”. In some sense, the dielectric
function representation by splines is a kind of patchwork of
all three declared tasks. It is related to the regression since
in ellipsometric analysis we try to reconstruct indirectly,
via certain calculations, various properties of measured
structures by fitting the measured quantities. Also, it is
essentially close to the function approximation since we
replace a “true”, and predominantly unknown, dielectric
function by easily computable and smoothing approxi-
mation. Finally, since the whole ellipsometric inversion is
performed on a given discrete set of data points, in fact, to
compute the function values at any desired points, one
should accomplish the function interpolation. It is now
widely acknowledged that the dielectric function repre-
sentation by splines is an extremely useful means of the DF
modeling. Spline functions are attractive for a number of
reasons. One of the obvious advantages to utilize various
kinds of spline functions is that often there is no need for
the DF parameterization by typical physics-based oscil-
lator models and many applications, especially in indus-
trial metrology, can be developed using spline curves for
determining the optical functions of materials. Other ex-
amples of the spline benefits for ellipsometric data
modeling will be highlighted throughout the review.

The objective of this paper is to provide a self-
contained presentation on the current status of the DF
modeling by spline functions for advanced industrial
ellipsometry users but, hopefully, it can be useful for some
scholarly users as well. The outline of this review is as fol-
lows. We provide first, in Section 2, a very brief description

1 Before the widespread use of computer-aided design tools, drawing
of smooth and precise curved objects for shipbuilding, airplane
manufacturing and the like has required use of real physical objects, –
for instance, a thin flexible strip of a material (wood, steel or plastic)
called a “spline” (see its use by a Boeing engineer on one of the
exclusive illustrations from Prof. Carl de Boor’s web page http://
pages.cs.wisc.edu//∼deboor/draftspline.html; accessed January 11,
2022). A draftsman used to draw a smooth and “pleasing to the human
eye” curve by placing a physical spline on a piece of Whatman’s
drawing paper, holding it at specified places with special hooked lead
weights called “ducks” (or “whales”) and drawing along the spline
with a pencil.
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of different ways, namely, ordinary polynomials, piece-
wise polynomials (splines), andB(asis)-spline functions, to
parameterize an arbitrary functionwhich can be used as an
analytic representation of the (ε1, ε2) curves. Section 3 is
devoted to the polynomial-based modeling of the optical
functions of materials for use in further SE data fitting
although, for the sake of justice, it is necessary to notice
that initially the splines of various types have been used for
smoothing the dielectric spectra after the “point-by-point”
fitting and also for storing the dielectric functions in
ellipsometry software databases. At first, we briefly review
the natural-cubic-spline representation as well as highly
sophisticated critical-point parametric dispersion models
developed to describe the complex-shaped dielectric
functions. Then the parameterization of the dielectric
function bymeans of B-splines is discussed in some details
as the most adopted spline approach in ellipsometric data
analysis. It should be especially emphasized that the actual
performance of the B-spline parameterization in practical
applications strongly depends on the number and loca-
tions of knots used to describe the dielectric function.
Therefore, Sections 4 and 5 deal with several guidelines for
selection of optimal knot numbers and their appropriate
locations to achieve better modeling accuracy in SE data
analysis. The penalized B-spline (P-spline) approach for
the dielectric function modeling, which we can also iden-
tify as an area of future research, is outlined in Section 6.
Finally, we end with a bibliography of selected publica-
tions on the review’s topic.

2 Spline preliminaries

As we already mentioned in Section 1, the task of the
dielectric function representation by splines is partly
related to an interpolation of a discrete function since in SE
the measured data are collected at multiple discrete
wavelengths λ (photon energies E) over a broad spectral
range. Typically, the SE data are represented by ellipso-
metric angles Psi (Ψ) and Delta (Δ) (or tan(Ψ) and cos(Δ)) at
each measured wavelength and angle of incidence. These
twomeasured quantitiesΨ andΔ can be used to determine,
via direct inversion or model-based regression, the mate-
rial properties, i.e., the real and imaginary parts of DF ε, or
the complex indexN. A conventional approach employs an
explicit parameterization of the ε2(E ) spectrum of a mate-
rial and then ε1(E ) is analytically or numerically derived
using the Kramers–Kronig (K–K) relation [8] that couples
the real and imaginary parts of the complex dielectric
function:

ϵ1(E) − 1 = 2
π
P∫

∞

0

E′ϵ2(E′)
E′2 − E2

 dE′  , (1)

where P denotes the principal value of the integral. For
another K–K relation, which expresses ε2(E ) via ε1(E ), see
[8]. A comprehensive overview of this procedure can be
found elsewhere [1–5].

General representation of a given continuous function
can be written as a linear combination of some weighted
basis functions

S(x) = ∑
n

k=0
akφk(x), x ∈ R , (2)

where n is the number of basis functions φk, ak represents
the real coefficient for the kth basis function. Here, we
briefly remind the reader of general background material
regarding different ways to parameterize an arbitrary
function by some quite reasonable functional forms.

2.1 Polynomial representation

Ordinary polynomials are well known for their important
role in the approximation of functions, integrals and de-
rivatives, in the solutions of equations, etc. Polynomials
may be considered as a special case of splines with no
knots. The polynomial representation occurs when the
basis functions φk in Equation (2) take the form

φk(x) = xk , (3)

that is, φ0 = 1, φ1 = x, φ2 = x2,… Therefore, a polynomial of
degree n, where n is a non-negative integer, may be
expressed in more common form

pn(x) = ∑
n

k=0
akxk

= a0 + a1x + a2x2 +⋯ + an−1xn−1 + anxn (4)

(note that there are n + 1 polynomial coefficients ak).
Famous Weierstrass’s approximation theorem [9]

states that any function continuous on the interval [a, b]
can be approximated uniformly by polynomials to any
degree of accuracy:

lim
n→∞

(max
x∈[a,b]

⃒⃒⃒⃒
f(x) − pn(x)

⃒⃒⃒⃒) = 0 . (5)

Furthermore, polynomials have a simple formand they
are intuitive and quite easy to work with. These and some
other advantages have made polynomials very useful and
popular tool in a staggering variety of applications,
ranging from physics, chemistry, engineering to statistics,
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economy, finance, – even traffic control and medical im-
aging, – i.e., wherever one needs to model many kinds of
real-world situations.

Unfortunately, “everything has its drawbacks…” [10]
and the polynomial representation is not always efficient
and, in practice, can behave poorly even for slowly varying
and analytic over the whole interval functions. A classical
example of such disadvantage is a well-known Runge’s
phenomenon [11] which occurs when smooth functions are
interpolated by polynomials of increasing degree on
equally spaced (equidistant) grids. In his numerical
example, Carl Runge showed that if the analytic for all real
x function f(x) = (1 + x2)−1 (the Runge function) is interpo-
lated with evenly spaced points in the interval x ∈ [−5,5],
then pn(x)→ f(x) only if |x| < xc≈ 3.63 and diverges for larger
|x|, that is, a problem of oscillations at the interval’s edges
arises. However, in order to model complex-structured
functions or data sets, one may need to increase the poly-
nomial degree n higher and higher which may result in
unpleasant consequences in many cases and produce
highly erroneous models. Shown in Figure 1 is an example
of undesired oscillating behavior of an ordinary poly-
nomial used to describe the results of spot-size character-
ization for a normal-incidence spectroscopic reflectometer.
Measurements were performed on a series of test pads of
various sizes (15–100 μm) formed on a semiconductor
wafer. Data analysis includes fitting of an appropriate op-
ticalmodel tomeasured spectra andmonitoring the quality

of fit (goodness of fit). As one can see, moving towards
smaller test-pad sizes, we observe clear degradation of the
fit quality. The example of polynomial non-convergence, or
the Runge phenomenon, is certainly evident in the neigh-
borhood of the end points (Figure 1).

A common example of the polynomial representation
used in SE is the Cauchy dispersion formula for the
refractive index n (= Re(N )) of insulators or semiconductors
in their range of transparency (that is, the extinction co-
efficient k ≃ 0) [1–3, 5] when it is written in terms of the
frequency of light ν

n(ν) − 1 = A + Bν2 + Cν4 + Dν6 +⋯ (6)

or photon energy E = hν (h is the Planck constant)

n(E) − 1 = A + BE2 + CE4 + DE6 +⋯, (7)

where A, B, C, and D are the material-dependent Cauchy
coefficients. Since the Cauchy relationship is, in fact, an
semi-empirical model (although it can be derived from a
classical Lorentz oscillator model by assuming zero damp-
ing; see, for instance, Ref. [2], p. 170) which assumes k = 0
and, therefore, themodel is not Kramers–Kronig consistent.
Note that the Cauchy dispersion formula in form of Equa-
tion (6) is conceptually different from the similar-looking
Buchdahl model n = n0 + a1ω + a2ω2 +⋯ + aqωq [12] which
also approximates the dispersive properties by polynomials
but only in terms of so-called chromatic coordinates
ω(λ) = (λ − λ0)/(1 + α(λ − λ0)), where λ0 is a suitably chosen
base (or reference) wavelength and α is a certain tuning
parameter. Occasionally in the literature, the more tradi-
tional form of the Cauchy dispersion relationship,
expressed in terms of the wavelength of light λ

n(λ) = A + B

λ2
+ C

λ4
 , (8)

is also referred as a “polynomial equation” or “polynomial
model.” However, such naming practice should be
considered as a violation of the conventional rules since
Equation (8), strictly speaking, is not a polynomial because
its terms have the negative exponents but the polynomials,
by definition, have only non-negative integer exponentia-
tion of variables (here we omit a special case of the Laurent
polynomials which allow negative powers of the vari-
able(s) to occur). Therefore, the polynomials as functions
have certain properties which the expressions with nega-
tive exponents do not manifest, – for instance, the poly-
nomials have no singularities (poles) in contrast with the
rational functions in reduced form (like const/λ2k in Equa-
tion (8)). In a normal manner, the use of the Cauchy
function in form of Equation (6) and (7) as a truncated low-
degree polynomial is justified in a limited spectral range

Figure 1: Illustration of the non-convergence for 17-degree poly-
nomial function (red solid line) on equally spaced grid. The red-filled
circles denote the quality of fit, taken as dimensionless, in data
analysis.

96 D.V. Likhachev: Ellipsometric data modeling with splines



without anomalous dispersion, that is, when the index of
refraction starts to decrease toward shorter wavelengths.

2.2 Representation by piecewise
polynomials (a.k.a. splines)

As we recalled in the previous subsection, the polynomial
representation of sufficiently complex function or over the
entire wide interval can be an ill-conditioned task, but
locally, on small intervals, even low-degree polynomials
can provide a reasonably good approximation. This, then,
brings us to the idea of using such polynomials indepen-
dently of each other to represent certain function in a
piecewise manner. Note that we limit ourselves to the
univariate polynomial case, that is, a polynomial in a sin-
gle variable. Incidentally, the use of piecewise poly-
nomials, or splines, dismisses a concern regarding
utilization of equally spaced intervals. Therefore, such
piecewise representation, or a spline function, consists of
polynomial segments defined over each interval of the total
range (wavelength or photon energy, for instance) and
joined together smoothly at knots. The order of the splinem
is the number of polynomial coefficients ak [see Equa-
tion (4)] in the polynomial segments or it is often referred as
the polynomial degree n plus one (m = n+ 1),– for instance,
the cubic splines are constructed by third-degree poly-
nomials and, therefore, their order is m = 4. The order of
spline function determines the smoothness of the
piecewise-defined curve since the derivatives up to order
m− 2 of the adjacent polynomial segmentsmust be equal at
joining points. Thus, a spline function is determined by the
degree n of the polynomial segments, the polynomial co-
efficients ak, and a series of non-descending knot values
known as a knot vector X = {x0, x1,…, xl−1, xl}. Splines arise
naturally in many extremal problems in a wide variety of
scientific and engineering fields [13–15].

Now, let us take a closer look at the case n = 3 (m = 4),
i.e., the cubic splines, which are the most common choice
for many applications since these functions are contin-
uous and they are smooth in the first derivative (slope)
and continuous in the second one (curvature). Besides,
traditionally the cubic spline functions are reputed so
well-behaved, therefore a statistical folklore asserts that
“a cubic spline is so smooth that the human eye cannot
detect the knots” [16]. Let a given wavelength or energy
interval [a, b] be presented by a union of subintervals
[x0, x1] ∪ [x1, x2] ∪… ∪ [xj−2, xj−1] ∪ [xj−1, xj], j = 1, 2,…, l.
Assume that over each subinterval [xj−1, xj] the function
can be presented by a third-degree polynomial (as illus-
trated in Figure 2)

fj(x) = aj + bj(x − xj−1) + cj(x − xj−1)2 + dj(x − xj−1)3, x
∈ [xj−1, xj], j

= 1, 2,…, l. (9)

From imposed continuity condition we have the
following constraints:
1. at each interior knot the values of adjacent polynomials

(splines) must be the same:

f(xj − 0) = f(xj + 0); (10)

2. at each interior knot the values of the first derivatives
of adjacent splines must be the same:

f ′(xj − 0) = f ′(xj + 0); (11)

3. at each interior knot the values of the second de-
rivatives of adjacent splines must be the same:

f ″(xj − 0) = f ″(xj + 0) . (12)

Also, there are different endpoint derivative conditions
to get a unique solution for the cubic spline function. For

Figure 2: An example of function presented by a third-degree
polynomial segments: (a) cubic spline function consisting of eight
polynomial segments: here P:a = x0 < x1 < x2⋯ < x7 < x8 = b is a
partition (equidistant) of the interval [a, b], f1(x), f2(x),…, f8(x) are the
polynomial segments, each described by Eq. (9); (b) the first-order
derivative of the spline function: smooth and continuous; (c) the
second-order derivative of the spline function shown in (a): not
smooth but continuous. Since the spline function f(x) is piecewise
cubic, its third-order derivative f(x) is piecewise constant (not shown
here).
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example, if the second derivatives of the third-degree
polynomials are forced to be zero at the endpoints of the

interval [a = x0, b = xl], i.e., f ″(x0) = f ″(xl) = 0, then such a
requirement constrains the function to be a straight line
outside the interval. The resulting spline function is called
the natural cubic spline.

Cubic spline representation works well in many cases
although it is also not free of certain inconveniences, – to
quote Schoenberg [17]: “Polynomials are wonderful even
after they are cut into pieces, but the cutting must be
done with care.” Indeed, the piecewise polynomials are
determined by many parameters, that is, the polynomial
coefficients ak, which define the shapes of individual
polynomial segments. For instance, for a cubic spline there
are 4(r − 1) coefficients, where r is the total number of knots
(the size of the knot vector X). If the interval [a, b] is divided
in numerous numbers of subintervals, then the number of
parameters can easily become excessive. Of course, in the
most general case the degrees of the particular polynomial
pieces and the number and positions of the knots may vary
in different situations. Moreover, the spline representation
with superimposed continuity conditions directly implies a
global disturbing influence on the curve shape due to any
alteration of given data point(s) and all polynomial co-
efficients must be re-evaluated simultaneously.

About a half of century ago Hiroshi Akima developed a
local method which is less prone to wiggles in the spline
interpolation and produces “visually pleasing” spline
curves [18]. The Akima’s method uses the piecewise cubic
polynomials similar to Equation (9) but it does not impose
usual continuity constrain on the second derivative and, in
comparison with a cubic spline representation, only the
continuous first-order derivative must exist. Instead, it in-
troduces certain “local” procedure to compute the slope

sj =deff ′(xj) at the point j using the slopes (mj−2,mj−1) of
two preceding segments and the slopes (mj+1,mj+2) of
two following segments (see Figure 3) (in other words,
the value of the spline function y = f(x) on subinterval
[xj, xj+1] depends only on the function values yj−2 = f(xj−2),
yj−1 = f(xj−1), yj = f(xj), yj+1 = f(xj+1), yj+2 = f(xj+2). Then the
required slope is calculated as a weighted average of those
four nearby slopes:

sj =
⃒⃒⃒⃒
mj+1 −mj

⃒⃒⃒⃒
mj−1 +

⃒⃒⃒⃒
mj−1 −mj−2

⃒⃒⃒⃒
mj⃒⃒⃒⃒

mj+1 −mj

⃒⃒⃒⃒ + ⃒⃒⃒⃒
mj−1 −mj−2

⃒⃒⃒⃒  , (13)

mk = Δyk
Δxk

= yk+1 − yk
xk+1 − xk

 ,

i.e., mk’s are the slopes of line segments
( j − 2)( j − 1), ( j − 1)j, j( j + 1), and ( j + 1)( j + 2) (Figure 3).

Or this condition can also be presented in more compact
form:

sj = ωj+1mj+1 + ωj−1mj

ωj+1 + ωj−1
 , (14)

where ωk = |mk −mk−1| are the corresponding weights.
Eventually, moving a point affects only the adjacent
portion of the spline curve which is an obvious advantage
of the method over ordinary cubic splines. The original
Akima’s method appoints an equal weighting on both
sides of the specified subinterval and also an appropriate
treatment of the interval [a, b] end points is required.
However, under certain conditions, – for instance, in case
when the slopes on the left side are equal (i.e.,mj−2 =mj−1)
and the slopes on the right side are also equal (mj =mj+1), –
the method requires some modifications. For more
comprehensive details concerning the Akima’s algorithm
improvement, the interested reader is referred to [19–21].

2.3 B-splines, compact support, positivity,
and all that (jazz)

Another important spline representation uses a class of
functions called B-splines (or B(asis)-spline functions).
According to the Curry–Schoenberg theorem, B-splines are
not ordinary splines but a set of localized functions from
which all other spline functions S(x) can be uniquely built

Figure 3: Visualization of the Akima’s approach to obtain the slope
sj as a weighted average of the nearest slopes mj−2, mj−1, mj, and
mj+1.

98 D.V. Likhachev: Ellipsometric data modeling with splines



as a linear combination (weighted sum) of individual basis
functions Bp(x) of non-negative integer degree p over
certain sequence of knots T={t0, t1,…, tl−1, tl}

S(x) = ∑
i
biB

p
i (x) , (15)

where i = 0, …, n, n is the number of basis functions, bi
represents the spline coefficient for Bp

i (x), the ith basis
function [22]. In simple phrase, rather than connecting
smoothly the local polynomial segments we can form the
required spline curve by summation of individual shifted
basis functions. Figure 4 shows a few examples of uniform
B-spline basis functions of different degrees. A B-spline is
called uniform if the knots are equally spaced (equidis-
tant), that is, Δtj = tj+1 − tj = const, and each knot appears
only once; otherwise, it is non-uniform. One can see that
the basis functions are locally supported piecewise poly-
nomial functions over finite intervals and they are exactly
zero outside these intervals, that is, [tj, tj+p+1] (the compact
support property). The latter property means that a modi-
fication of the spline function S(x) at some point x has only

a local influence and will not affect other parts of the
function, – in contrast to ordinary piecewise polynomials
of the previous subsection, – and this is one of the great
advantages of B-spline basis. Note also that the basis
functions are non-negative. Therefore, the spline function
S(x) in Equation (15) is always positive if all spline co-
efficients bi are non-negative (the convex hull property).
Another important property is that all B-splines with
respect to a knot sequence form a partition of unity:
∑iB

p
i (x) = 1 for all x ∈ [xp, xl−p], where l + 1 is the number of

knots in the knot vector T= {t0, t1,…, tl−1, tl} with l= n+ p+ 1
(in general, the knot vector can be non-uniform). However,
at the knot sequence boundaries the partition of unity
property does not hold (Figure 5). All these properties
result in a high numerical stability and computation-
friendly evaluation of the B-splines. Another interesting
fact is that the sequence of normalized and scaled B-splines
Bp tends to the Gaussian function as p increases (the
asymptotic convergence property).

The Cox–de Boor recursion formula [22–24] (some-
times also called the Cox–de Boor–Mansfield recurrence
relation) is one of the simplest ways to construct B-splines:

B0
i (x) = { 1, if tj ≤ x ≤ tj+1

0, otherwise
, p = 0,

Bp
i (x) =

x − tj
tj+p − tj

Bp−1
i (x) + tj+p+1 − x

tj+p+1 − tj+1
Bp−1
i+1 (x), p ≥ 1 . (16)

(for some historical comments on the early history of the
recurrence relations, see [25]). From Equation (16) we see
that a convex combination of two lower-order shifted basis
function Bp−1

i and Bp−1
i+1 gives the value of the higher-order

basis function Bp
i . Figure 6 illustrates that each B-spline of

degree p is a linear combination of B-splines of degree p− 1.
One can immediately notice that if a knot multiplicity ξj in
the knot vector T is equal to one (a knot has multiplicity ξ if
it appears ξ times in the knot sequence, i.e., identical knots
[26]) the B-spline becomes equal to zero at the end points
when x = tj and x = tj+p+1. But for the knots with multiplicity
greater than one the recursion can have fractions with
zero denominators. Despite the “First Commandment” of

Figure 4: Examples of uniform B-spline basis functions of different
degrees.

Figure 5: Illustration of the partition of unity
property for univariate B-splines: the light-
green filled area indicates the natural defi-
nition domain where the partition of unity
property holds. Red line is formed by linear
combination of equally-spaced shifted
B-spline basis functions with all co-
efficients bi equal to one (shown as black
dashed lines).
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mathematics “Thou shalt not divide by zero!”,2 in the case
of possible divisions by zero in Equation (16) we follow the
common convention [26] that “anything divided by zero is
zero”, allowing, thereby, an incorporation of repeated
knots (ξ > 1). The knot multiplicity, in fact, controls the
continuity of spline function S(x) and its derivatives and
increasing the ξ value of a knot reduces the continuity at
that knot. For example, a cubic B-spline curve, the most
common choice for many applications, with a knot multi-
plicity ξ = 4 is discontinuous at the knot. The knot multi-
plicity larger than one is a definite advantage in various
scientific and engineering fields of computer-aided design,
medical imaging, computer vision, advanced animation,
geology, oceanography, meteorology, etc. However, the
repeated knots must be excluded if there is a strict
requirement to enforce an analytical continuity of the spline
curve, – as, for instance, for representation of the dielectric
function in SE data analysis. Alternatively, B-splines can
be defined by means of divided differences. A detailed
description of this definition is beyond the scope of this
paper, but the interested reader is encouraged to read
some of the references available for further information
(e.g., [14, 27]).

Besides already mentioned B-spline advantages, like
compact support and non-negativity, if a knot vector with
predetermined number and locations (not necessary uni-
form) of knots is used, only the coefficients bi [see Equa-
tion (15)] are considered as tuning parameters which need
to be estimated, – as opposed to the standard piecewise
polynomials where the number of parameters for each
polynomial segment is defined by the polynomial order.

The coefficients bi are the ordinates of so-called B-spline
control points or de Boor points (Figure 7). Figure 7 illus-
trates how the control points affect the individual B-spline
basis functions and form the resulting spline curve S(x). It
can easily be seen that changing the control points is the
most convenient way to modify the shape of the spline
curve. Moreover, changing the control point for particular

basis function Bp
i affects the spline curve S(x) only on in-

terval [tj, tj+p+1], i.e., locally. Therefore, the B-spline

Figure 6: Visualization of the recursively defined B-splines as a combination of two lower-order shifted basis function. (Left panel) Two
piecewise constantB-splinebasis functionsB0(x) yield a linear (p=1) one (the so-calledhat function); (middle panel) two linear basis functions
B1(x) form a quadratic (p = 2) one; (right panel) two quadratic basis functions B2(x) produce a cubic (p = 3) B-spline.

Figure 7: For the sake of simplicity only the uniform cubic B-spline
curve S(x) (red solid line) formed by linear combination of shifted
B-spline basis functions of degree p = 3 (black dashed lines) is
shown. The B-spline control points, which can be described as
weights for each basis function are visualized by the markers. The
green filledmarker corresponds to two different control point values
of (a) 0.7 and (b) zero. It is not difficult to see that, in that case, the
shape of the curve is modified only in the interval [tj, tj+4].

2 However, there is a science joke that “…physicists were dividing by
zero all the time – as long as no one was looking.” [see E. Maor, Thou
Shalt Not Divide by Zero!,Math Horizons 11 (2003), pp. 16–19. https://
doi.org/10.1080/10724117.2003.12021744.
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representation of curves is more preferable due to, for
instance, computation-friendly mathematical foundation
(no need to constrain derivatives or/and curvatures of the
concatenated polynomial segments). Finally, the Kram-
ers–Kronig consistent representation of the optical func-
tions (the complex dielectric function and complex index
of refraction) by means of B-splines is also possible [28].

One should note that for quite some time the use of
B-splines for the function approximation/interpolation
have not received a great deal of attention. As has been
even pointed out by John Rice, “The B-spline representa-
tion has one real drawback; namely, the B-splines are
unfamiliar functions. They have a lot of nice properties,
but these properties are not trivial to derive. One should
view B-splines as new elementary or special functions,
analogous to sines or Bessel functions.” (see [27], p. 80).
Nowadays, this statement regarding a lack of familiarity
with the B-splines should be seen as obsolete. Indeed, the
advent of so simple and elegant B-spline recursive defini-
tion (Equation (16)) has led to a standard and straightfor-
ward way for numerical computations in data analysis,
computer-aided design and computer graphics applica-
tions. The latter ones, particularly in the entertainment
industry, are widely familiar even to the general public, –
as an example, the morphing transformation of the T-1000
terminator, the liquid-metal man, in James Cameron’s
Terminator 2: Judgment Day is an excellent example of
using B-splines: “…All of this stuff was being modeled in
uniform cubic b-spline surfaces …” [29].

3 Polynomial-based modeling of
the optical functions

This section starts with brief historical remarks concerning
primordial use of splines in spectroscopic ellipsometry
applications. Then, in Section 3.1, we briefly review the
natural-cubic-spline representation as well as highly so-
phisticated critical-point parametric dispersion models
developed to describe the complex-shaped dielectric
functions. Finally, in Section 3.2, the parameterization of
the dielectric function bymeans of B-splines is discussed in
some details as the most adopted spline approach in
ellipsometric data analysis.

3.1 Piecewise polynomial modeling of the
dielectric function

In spite of prevalence of the oscillator-based dispersion
models [1–5], developed from physical principles, in the

last three decades a purely mathematical approach to
represent the dielectric functions by means of different
categories of spline functions has become increasingly
pervasive for the interpretation of spectroscopic ellipsom-
etry data. At first, splines in ellipsometric data analysis
were used only for smoothing the dielectric spectra ε (or N)
(see, as an example, [30]) after performing point-by-point
numerical inversion ([4], pp. 95, 96) which, as it is
commonly known, translates existing measurement noise
into extracted DF. At about the same time, in works by
Vanhellemont et al. [31–33] the dielectric functions (or n
and k’s), needed for analysis of SE data, were not only
smoothed by cubic splines but also stored in ellipsometry
software in form of cubic B-splines. This approach pro-
vided a few advantages, as it was noted by the authors.
First of all, it allows to have a continuous at any wave-
length (or photon energy) optical function instead of a
tabulated list of n&k’s (a.k.a. dispersion table). Moreover,
the B-spline representation with just a few corresponding
coefficients greatly reduces the consumption of computer
memory used for storing the material optical functions, –
an important factor for older, low-performing computers.
However, it must be clearly stated that in the discussed
approach the B-splines and their associated coefficients
were not used in regression analysis (data fitting) as fitting
parameters, i.e., they were not allowed to vary.

In 1992, Hu et al. [34] developed a Kramers–Kronig
consistent dispersion relation for amorphous germanium
dioxide GeO2

ϵ1(E) = 1 + A
π
∫
E1

0

⎛⎝ E*e
E−E1
Eu

E*2 − E2
⎞⎠dE* + A

π
 ln(E2

2 − E2

E2
1 − E2), (17)

where a cubic spline was used for a first time to represent
the exponential contribution into the imaginary part ε2 of
the dielectric function, – it allowed to get the resulting
integral in analytic form and greatly simplified the data
fitting. Strictly speaking, it was not a full spline represen-
tation for the dielectric function yet. Later on, this spline-
basedK–K consistent approachwith a natural cubic spline,
in more explicit shape, appeared in the paper by Zettler
et al. [35] where it was applied to obtain the optical prop-
erties of C60 fullerene thin film on silicon. The whole
spectral range was divided into subintervals at which the
imaginary part ε2 of the dielectric function is represented
by cubic polynomial [see Equation (9)].3 Then the integral

3 Note that in the text of [37] itself the expression for ε2(E) is incorrectly
formulated as a fourth-degree polynomial, a.k.a. quartic polynomial,
although the resulted integrals, the sum of which forms the K–K in-
tegral, were written in correct forms.
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in the K–K relation Equation (1) can be approximated (see,
e.g., [36], pp. 285–287) as a sum of integrals of the form
∫(xm/(x2 − a2)) dx, each one of which can be evaluated
analytically ([37], p. 41). In both above-mentioned ap-
proaches [34, 35] the associated spline parameters are
allowed to vary to adjust ε2 in a process of regression
analysis. We mention, in addition, paper by Zorn et al. [38]
in which a combination of the natural cubic spline with
unevenly spaced knots and several harmonic oscillators
was used to describe different contributions to the dielec-
tric function of indium phosphide (InP).

Furthermore, there are several more instances of
piecewise polynomial modeling in ellipsometry data
analysis. By way of example, De Sousa Meneses et al. [39]
demonstrated the application of a piecewise polynomial
dielectric function model to retrieve the DFs of silica and
water. In the works of Gilliot et al. [40] and Gilliot [41], the
authors proposed the use of “constrained” splines, that is,
the piecewise cubic polynomials similar to Equation (9)
with certain conditions on thefirst-order derivatives at knot
positions and no constrains on the second derivatives. All
these features point generally to an affinity with the Aki-
ma’s approach. However, in Refs. [40, 41] the expression
for the slope at the point j for all interior knots (with one-
sided slope estimates for the end points of spectral interval)
is written as

sj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
xk+1 − xk
yk+1 − yk

+ xk − xk−1
yk − yk−1

if (yk+1 − yk)(yk − yk−1) > 0,
1
2
(yk+1 − yk
xk+1 − xk

+ yk − yk−1
xk − xk−1

) if (yk+1 − yk)(yk − yk−1) < 0,
0 if (yk+1 − yk)(yk − yk−1) = 0.

(18)

As one can see, Equation (18) represents nothing more
than the harmonic mean4 of the adjacent line segment
slopes, that is, sj = H(mj−1,mj) (cf. Equations (13) and (14)
and Figure 3). Although this form of averaging is also
legitimate, one should beware of a difference in contribu-
tion by larger and smaller slope values in case of the har-
monic mean. Namely, the harmonic mean gives a higher
weightage to the smaller slopes and vice versa.5 The

application of this constrained spline approach has been
demonstrated for a series of reference materials as well as
ZnO thin films with various morphologies.

There is also an important group of parametric disper-
sion models to describe the complex-shaped dielectric
functions, especially in vicinity of critical points, of poly-
and single-crystalline semiconductor materials. Beyond
any doubt, these so-called critical-point (CP) models
deserve our mentioning in a context of this review because
some of them use low-order polynomials with Gaussian or
Lorentz broadening to describe the dielectric function ε of
semiconductors. It is generally accepted that such model
was initially introduced by Kim et al. (the Kim–Garland
model) and applied to GaAs and AlxGa1−xAs alloys [42, 43].
The use of polynomials makes this model solvable
analytically in certain cases. The mathematical details of
the Kim–Garlandmodel were also addressed elsewhere [4].
It was noted that an application of the model results in
excellent quantitative agreement with experimental re-
sults. However, themodel is highly complex and contains a
large number of variable parameters, – for instance, the
authors of work [43] used 37 parameters to get the dielectric
function of AlxGa1−xAs alloy for each x and 119 parameters
altogether. It is not a surprise that in this case considerable
correlations between the model parameters may exist.
Nevertheless, the Kim–Garland model gave rise to the so-
called Gauss–Lorentz oscillator model by replacing the
joint density of state function with the Dirac δ-function
[44], – the Gauss–Lorentz model allows the broadening of
the absorption peak to vary smoothly between the Lor-
entzian and Gaussian shapes.

Shortly after development of the Kim–Garland model,
Herzinger and Johs [45] proposed the parametric semi-
conductor (PSEMI) oscillator model which represents the
dielectric function as a summation of energy-bounded,
Gaussian-broadened polynomials and a few poles respon-
sible for contributions into ε1 (or index n) due to absorption
occurring outside the spectral range used in data analysis.
Each PSEMI oscillator consists of four smoothly connected
polynomial segments: typically, two fourth-order inner
polynomials and two second-order outer polynomials (see
Figure 8). Such group of polynomials is centered around
critical point EC with corresponding amplitude AC. At the
end points EL and ER of each oscillator the polynomials are
forced to be equal to zero. The coordinates of two control
points (EML, AML) and (EMR, EMR) correspond to the joining
points of the polynomials. These control points allow
essentially independent control of the asymmetric proper-
ties of the PSEMI oscillator shape. Moreover, at the energy
EC the model allows the amplitude discontinuity between
the left and right polynomials, controlled by an extra

4 The harmonic mean is the reciprocal of the average of the reciprocals
of certain values; see CRC Standard Mathematical Tables and For-
mulas, 33rd ed. Boca Raton, FL, U.S.A., CRC Press, 2018, p. 70581.
5 Indeed, considering, as a simple example, the harmonic mean of
just two positive real numbers x1 and x2 can be expressed asH(x1, x2) =
2/(1/x1 + 1/x2) = 2x1x2/(x1 + x2) = w1x1 + w2x2, where w1 = x2/(x1 + x2)
and w2 = x1/(x1 + x2). Obviously, if x1 < x2 when w1 > w2, – thus, the
harmonic mean favours smaller numbers.
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parameter. Thus, the PSEMI oscillator structure is defined
by five energies (EL, EML, EC, EMR, and ER) and three am-
plitudes (AML, AC, and AMR) as well as possible amplitude
discontinuity parameter. In addition to that, the model
includes the Gaussian broadening factor for each CP. The
Herzinger–Johs model does not use the polynomial co-
efficients per se as the fitting parameters. Finally, the full
imaginary part ε2 of the DF can be expressed as a super-
position of multiple PSEMI oscillators, that is, the oscilla-
tors play a role of sui generis “skeleton”. Figure 8 also
illustrates the ε2 spectra of a certain fictitious material
composed of four separate PSEMI oscillators. The corre-
sponding real part ε1 of the DF can be obtained through the
Kramers–Kronig relation [see Equation (1)]. Detailed
mathematical descriptions of the model as well as a
comprehensive explanation and discussion of the model
parameters are also provided in Ref. [5].

Since its development, the Herzinger–Johs parametric
oscillator model has been used inmultiple applications and
some of them as examples can be found in Refs. [45–53].
However, despite many advantages, such as excellent flex-
ibility in high-fidelity description of the sharp DF features
and guaranteed K–K consistency, there are apparent
shortcomings as well. In particular, the aforementioned
flexibility, determined by a large number of fitting param-
eters (e.g., the PSEMI model for a silicon substrate contains
58 adjustable internal parameters [46]) and inter-parameter
correlations, leads to non-uniqueness of the resulting
model. Obviously, it is possible to obtain multiple combi-
nations of model parameters which will result in approxi-
mately the same ε2 curve and, therefore, alike quality offit in
ellipsometric data analysis. In fact, this is not a significant
disadvantage since those PSEMI oscillator parameters do
not have direct relationship to CP parameters obtained from
derivative analysis. Also, due to the model complexity its
usage typically requires an expertise from a high-level
metrology specialist.

3.2 Parameterization of the dielectric
function by means of B-splines

As far as we are aware, the B-spline public debut on the
“ellipsometric stage” dates back to works by Vanhellemont
et al. [31–33]. As mentioned in the previous subsection, in
that case B-splines were employed for smoothing and stor-
ing in software the already obtained ε1 and ε2 spectra, – and
all B-splines coefficients were fixed and not varied during
the regression analysis. Next we mention the article by
Kuzmenko [54], concerned with the dielectric function
representation by a linear superposition of an enormous
number of narrow Lorentzians or triangular-shaped func-
tions where the Lorentz oscillator strengths or the co-
efficients of the triangular functions are the adjustable
parameters in the regression analysis. Actually, since the
triangular functions are locally supported, i.e., nonzero
only inside a small interval, they are more preferable
candidates for modeling some real materials like the
organic films with numerous and overlapping sharp

Figure 8: An example of the single PSEMI
oscillator and a constructed ε2 lineshape:
(a) A sketch of a single CP structure
consisting of four polynomial segments
labeled as I, II, III, and IV. This is just one
example of the PSEMI oscillator (without
possible discontinuity in amplitude at the
center energy EC). (b) As an illustration, four
PSEMI oscillators of different shapes (black
dashed lines) are summed together to form
the imaginary part ε2 of the DF for a certain
hypothetical material (red solid line).

Figure 9: The Kuzmenko’s “forest” [54] of several triangular
functions (indicated by black dashed lines) as a prototype of the
B-spline representation with the basis functions of degree one (cf.
Figure 4).
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absorption peaks. Then, similar to Equation (2), the imag-
inary part of εmay be represented by a linear summation of

triangular functions ϵ△2 located at specified grid co-
ordinates (frequencies) as

ϵ2(ω) = ∑
i
Aiϵ△2, i(ω), (19)

where the coefficients Ai are allowed to vary (fitting pa-
rameters) and the functions ϵ△2, i(ω) play a role of the basis
functions:

ϵ△2, i(ω) =
⎧⎪⎨⎪⎩

(ω − ωi−1)/(ωi − ωi−1), ωi−1 < ω ⩽ ωi,
(ωi+1 − ω)/(ωi+1 − ωi), ωi < ω < ωi+1,
0, otherwise.

(20)

The real part can be obtained by the K–K relation
Equation (1). The attentive reader will notice that Kuz-
menko’s approach looks exactly like a prototype of the
representation by B-spline basis functions of degree 1, the
hat functions (Figure 9). Furthermore, as it has been
emphasized in Ref. [54], the frequency grid should be
dense enough to accurately represent certain complex-
shaped dielectric functions, that is, by using a large
number of fixed equally-spaced frequencies (possibly
close or even equal to the number of measured spectral
points). Obviously, an enormous number of grid points
will result in an enormous number of fitting parameters
(the coefficients Ai) which may lead to some instability in
numerical regression analysis [54]. Moreover, the same
procedure was also expanded to magneto-optics (see, for
example, Ref. [55]).

In 2008, Johs and Hale [28] proposed to describe the ε2
curve by means of B-splines of arbitrary order and then the
real part ε1 can be analytically derived using the K–K
relation. Formally speaking, such K–K consistent deriva-
tion can be abstracted as follows:

By introducing the B-spline representation

ϵ2(E) = ∑
i
biB

k
i (E), (21)

then

ϵ1(E) = ϵ1(∞) + ∑
i
biϕk

i (E), (22)

where

ϕk
i (E) =

2
π
P ∫

∞

0

E′Bk
i (E′)

E′2 − E2
 dE′, (23)

which is the K–K transform of the B-spline basis function
Bk
i . Johs and Hale also noted that the basis function ϕk

i can
be represented as

ϕk
i (E) =

1
π
(Iki (E) + Iki (−E)), (24)

where

Iki (E) = P ∫
∞

0

Bk
i (E′)

E′2 − E2
 dE′ (25)

and the integral Iki can be computed by the same Cox–de
Boor recursion relation Equation (16) (further details can be
found in Ref. [28]). Therefore, the problem of data fitting
(regression analysis) will be reduced to the determinationof
the coefficients bi. This introduction of the recursion for-
mula for Iki was amajor step towards the fast adoption of the
K–K consistent B-spline formulation in SE data analysis.

The B-spline approach for the DF modeling has mul-
tiple advantages which follow from definition and prop-
erties of the basis spline functions (see Section 2.3 above for
details). First of all, such purely mathematical way to ex-
press the optical functions of a material does not involve
any theoretical models for the material response to light
exposure, that is, the interaction of light with material’s
electronic and ionic subsystems. Also, it is easy to control
a sign of the imaginary part ε2, – since ε2 ought to be al-
ways positive or zero, all spline coefficients must be non-
negative. And last, but certainly not least, the B-spline
modeling is now available as an option in some ellipso-
metric software packages which accompany various com-
mercial spectroscopic ellipsometers. Evidently that in the
last decade or so this approachhas been gaining popularity
within the ellipsometric community because our search in
the Google Scholar database with combination of the key-
words “B-spline” AND “spectroscopic ellipsometry” (here
AND means the Boolean operator) returns more than 700
entries for publications from 2008 to 2021. Certainly, it is
not possible to cite all relevant publications on the topic
and we provide only a short selection of corresponding
references [51, 56–67] for the interested reader, – and we
hope that any reader will not be offended if we confess that
this choice of works might be slightly subjective and not
simply based on the number of theGoogle Scholar citations.

To the best of our knowledge, the first article, in which
the Johs–Hale approach to the dielectric function repre-
sentation by means of B-splines has been used, was pub-
lished by Weber et al. [56] where it was applied to the
hydrogenated amorphous carbon (a-C:H) thin films.
Shortly after that, more and more ellipsometry users star-
ted using the B-spline parameterization of the optical
functions either as a “stepping stone” to more physical
modeling (like a summation of Lorentz, Harmonic or/and
Gaussian oscillators) or even as a complete alternative to
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commonly used oscillator models. Indeed, after going
through many articles on the topic it seems that there is a
pronounced tendency to gradually supersede previously
widely used point-by-point fitting by the B-splinemodeling
which maintains the K–K consistency. Although in each
particular case one can select the B-spline of any degree p
(only constrained by the size of the knot vector T = {t0, t1,…,
tl−1, tl} and the number of basis functions n since
l = n + p + 1; see Section 2.3), in practice, the cubic B-splines
(with p = 3) are the most common choice for many appli-
cations since these functions and their first and second
derivatives are continuous and, figuratively speaking
again, they are “so smooth that the human eye cannot
detect the knots” [16]. Or, as Eilers and Marx stated with
confidence [68], “In practice there is seldom a need for
another value.”As an example, Figure 10 demonstrates the
complex dielectric function ε = ε1 − iε2 of the E570 resist
composed from multiple weighted cubic B-spline basis
functions. As we have already mentioned, B-splines are
commonly used throughout many industrial and scientific
applications. As an aside from ordinary ultraviolet–
visible–near-infrared (UV–VIS–NIR) ellipsometry/reflec-
tometry, for a very long time B-splines have been also used
in optical metrology for data analysis of neutron and X-ray
specular reflectivity and reconstruction of scattering-
length-density profiles [69–72].

However, turning back to the dielectric function rep-
resentation by B-splines, we should declare that the
approach still is far from being perfect for a number of
reasons. Firstly, since the B-spline formulation is not
physics-based, an extraction of useful physical informa-
tion about the material under study, like the energy band

gap Eg, is not straightforward and required certain addi-
tional ways of evaluation. Another disturbing shortcoming
arises from the fact that the actual performance of B-spline
parameterization in the regression fit is strongly affected by
the choice of knot vector, i.e., the number of knots and their
distribution density (uniform or non-uniform). In a
simplest case of equally-spaced knots, it is intuitively easy
to see that a spline function with fewer knots may not fit
some sharp and narrow spectral features (underfitting). On
the other hand, increasing the number of knots beyond
certain optimal value implies high flexibility but may also
put us at risk to overfit the data and, hence, to produce
highly noisy or even unphysical results, – some illustrative
examples can be found in Refs. [73–75]. Optimal knot
allocation is a long-standing issue and it is required to
prevent under- and overfitting in SE data analysis. Gener-
ally speaking, the problem of overfitting which is attrib-
utable to any models, not only the spline ones [76, 77], has
been well-recognized in the global community of modelers
for quite some time and even referred as “Beware of von
Neumann’s elephants” [78]. Here we can well afford a brief
scientific-historical digression on the origin of the now
classic “von Neumann’s elephant” wording. The reason
lies in the story told by famed theoretical physicist and
mathematician Freeman Dyson about his memorable
conversation with another brilliant theoretical and exper-
imental physicist Enrico Fermi occurred in the spring of
1953: “In desperation I asked Fermi whether he was not
impressed by the agreement between our calculated
numbers and his measured numbers. He replied, “How
many arbitrary parameters did you use for your calcula-
tions?” I thought for amoment…and said, “Four.”He said,
“I remember my friend Johnny von Neumann used to say,
with four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.” [79]. In 2010, Mayer et al. [80]
provided the first successful realization of von Neumann’s
assertion by reconstructing an elephantine shape with four
complex numbers and even having a wiggling trunk by
using the real part of the fifth parameter.

The main concepts for the number of knots selection
and optimal knot distribution are discussed in the next
sections.

4 Choosing the optimal number of
B-spline knots

The complexity of dielectric function representation by
B-splines, i.e., the B-spline model, is substantially deter-
mined by the number of knots or, equivalently, the

Figure 10: Real (ε1) and imaginary (ε2) parts of the complexdielectric
function of an ∼190 nm-thick E570 resist film parameterized using
equally-spaced weighted B-spline basis functions of degree 3 (with
small additional contribution at the higher end of the spectral range
from outside extra absorption and also assuming the transparent
region below 3.25 eV). The individual basis functions forming the ε2
curve are indicated by thin black solid lines.
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corresponding spacing between the knots. In practice, the
number of knots used in ellipsometric data analysis is
chosen and tuned empirically based on quite often
ambiguous and intuitive decisions. Again, wewould like to
emphasize that our goal here is to find an acceptable bal-
ance between the quality of model fit to the experimental
data with the model complexity which implies, in partic-
ular, the number of knots. For that we can consider the
B-spline parameterization of ε as just a mathematical
model with variable number of model parameters, in this
case, the number of knots. A set of the B-splinemodelswith
different number of knots will form a collection of so-called
candidate models. Selection of the “best” model from this
set is usually based on a value of χ2, the biased or unbiased
fitting error estimator [1–3] (the term mean squared error
(MSE) is also very frequently used for the unbiased esti-
mator), as well as the estimations of the cross-correlation
coefficients and confidence limits of the best-fitting pa-
rameters. Apparently, the fit to the data does get better with
increasing number of knots but at a certainmomentwewill
get into a situation when a separation between measure-
ment noise and actual behavior becomes difficult or even
impossible. This is directly related to the problem of pre-
dictability when an excessive number of model parameters
will perfectly describe one set of measured data but will be
significantly less efficient for another one. Therefore, we
need to come up with certain “good enough solution” to
optimize the B-spline complexity or, in other words,
perform a model selection, that is, a process of choosing
one model from a set of existing candidate models.

Several traditionalMSE-basedmodel selection criteria,
such as the Akaike information criterion (AIC), the cor-
rected AIC (AICc), and the Bayesian information criterion
(BIC), are among the most popular methods to perform
model selection task [81]. In terms of the residual sum of
squares (RSS) these penalized informational criteria (IC)
are defined as

ICj = nln(RSSj
n

) + μp + C , (26)

where subscript j corresponds to one of the candidate
model from a set, n is the number of data points, i.e., the

number of pairs of the ellipsometric angles (Ψ, Δ), the RSS
is the sum of the squares of the vertical deviations from
each data point to the curve fitted by jth model, p is the
number of model parameters (consists of the number of
interior knots and other model variables, like film thick-
nesses), and μ is the penalty term of different kind for
various information criteria:
– Akaike information criterion (AIC): μ = 2
– Corrected AIC (AICc): μ = 2n/(n − m − 1)
– Bayesian information criterion (BIC): μ = lnn.

The constantC canbe neglected inmodel comparison since
only the difference in the IC values (scores) and not their
absolute values are relevant. Obviously, all candidate
models should be fitted to the same set of data. As one can
see, Equation (26) enables computation of the AIC, AICc,
and BIC scores from standard regression output. Both the
AIC and BIC measures have two terms. The first one is a
measure of the model lack of fit and can be reduced by
increasing the number of parameters p in the model. At the
same time, the second term penalizes for the additional
parameters in the model and increases with increasing the
number of parameters. Themodel which gives theminimal
AIC or BIC score is considered as the best fitting model
since it minimizes the difference between the candidate
model and the measured data using minimal number of
parameters. Clearly, the BIC penalizes for the addition of
new parameters more strictly than the AIC due to the
presence of plnn penalty weight term and, therefore, it
tends to select simplermodels, i.e., themodelswith smaller
number of parameters (since lnn > 2 for any practicable
data sets and BIC ≈AIC for n = 7 or 8). Usually, both of these
criteria have shown good agreement on the ranking of
candidate models which is fairly surprising since these
criteria represent very different approaches. The corrected
AIC has been introduced in cases when the number of
model parameters p is not small compared to the number of
data points n and the ordinary AIC sometimes performs
poorly selecting models with excessive number of param-
eters (there is a simple “rule of thumb”: the sample size is
considered to be small if n/p is less than 40). If n is large
relative to p, n ≫ p, then the correction to original AIC’s

Figure 11: Real (ε1) and imaginary (ε2) parts of
the complex dielectric function of thin TiN
film parameterized by B-splines with
different number of equally-spaced knots.
To enhance visibility, the curves for 15 and
53 knots are shifted up vertically by 2 and 4
units, respectively.
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penalty term becomes negligible and the AICc asymptoti-
cally tends to AIC. Due to the differences in the penalty
terms, the AIC and BIC measures might disagree from time
to time on the ranking of candidate models. In these in-
stances, the IC provides, at least, the upper and lower
bounds for the range of suitable models. Moreover, there
are a variety of penalized informational criteria, derived
within different theoretical frameworks, and a compre-
hensive overview of mathematical details on the
information-theoretic and Bayesian methodology can be
found elsewhere [81].

As an example, Figure 11 shows three resulting curves
for the real and imaginary parts of the titaniumnitride, TiN,
dielectric function, obtained with different number of
equally-spaced basis knots (11, 15, and 53 knots). Note that
the (ε1, ε2) curves corresponding the B-splinemodel with 53
knots (the knot spacing was set to 0.10 eV), which yields
lowest MSE value of 2.624, exhibit multiple wiggly artifacts
due to a small knot spacing. At the same time, the (ε1, ε2)
curves obtained from the model with only 11 knots (the
knot step was 0.50 eV) look very smooth but result in the
highest misfit with MSE = 5.230. Thus, the reduction of the

number of knots in the B-spline model eliminates the
observed modeling artifacts but, expectedly, worsens the
quality of fit to experimental data, implying that certain
essential spectral features might be missed. Therefore, a
feasible balance between good fit (low MSE value) and
model complexity (to avoid data overfitting) need to be
established.

The results of IC analysis of the TiN B-spline parame-
terization are shown in Table 1 and also plotted in Figure 12
as a function of the number of B-spline knots. These table
and figure indicate that the minima of the IC measures
(AICc and BIC) occur for 15 equally-spaced knots,– in other
words, the criteria point to the B-spline representationwith
15 knots as an optimal choice. The (ε1, ε2) curves generated
with optimal number of 15 knots, selected by the infor-
mation criteria, display the absence of apparent artifacts
(see Figure 11) and yield an acceptable MSE value of 3.817.

Certainly, when the AIC and BIC measures select
different optimal number of knots, the interpretation of the
results might become more sophisticated. More details of
the IC analysis as well as other examples are given in
Refs. [73, 74, 76, 77].

5 Knot placement matters as well

In the previous section we have detailed one of the
possible formalisms for selection of the optimal number of
B-spline knots confining ourselves to the case of ordinary
equidistant (equally spaced) knots. However, an equidis-
tant knot arrangement is not necessarily an optimal choice,
especially if the dielectric function curve of certainmaterial
has numerous sharp and overlapping features in some
spectral intervals but, per contra, is featureless in other
regions (see Ref. [66] for a few good examples of B-spline
applications in infrared spectroscopic ellipsometry).

Optimal knot placement is a long-standing and chal-
lenging problem in the context of non-uniform B-spline
approximation. Indeed, the non-equidistant knot alloca-
tionwould play a key role in order to effectively represent a
complex-shaped DF curve. Such “optimized” knot posi-
tioning does improve the fit quality for a large variety of the
curve shapes with smaller number of knots and by that
means reduces the B-spline model complexity [28, 82].
Knot optimization is a popular topic in various areas of
scientific and industrial applications such as computer-
aided design, image processing, reverse engineering (or
shape modeling) material science, etc. and there are too
many relevant publications to provide an exhaustive list,
therefore, just a few selected recent papers are referenced
here [26, 83–87]. In one of conventional ways of dealing

Table : The AICc and BIC results for B-spline parameterization of
the TiN dielectric function. The optimal number of knots is deter-
mined by the minima of the AICc and BIC measures.

No. of knots MSE AICc BIC

 . . .
 . . .
 . . .
 . . .
 . . .
 . . .

Figure 12: Determination of the optimal number of knots: the AICc
and BIC scores are plotted against the number of knots in the
B-spline parameterization of the TiN dielectric function. The black
dashed vertical line indicates the minima of the AICc and BIC
measures.
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with this problem, the knots are treated as free variables.
However, these free-knot splines, i.e., the splines whose
knot locations are considered as the parameters estimated
from data fitting, suffer from the poor convergency of a
multivariate, highly nonlinear optimization problem with
multiple local minima of the fitting error estimator (cf. the
“lethargy” property [88]). In that case, the performance of
local optimization algorithms strongly depends on a
rightness of the knot initial choice since the local algorithm
will likely “roll down” into the nearest minimum. To avoid
such local method drawbacks certain global optimization
techniques can be applied but at the expense of high
computation costs. Another disadvantage of using free-
knot splines is that the resulting knot vector might include
identical knots, i.e., knots with multiplicity ξ greater than
one which may cause some unwanted features such as
discontinuities in the dielectric function curve and/or its
derivatives.

Alternative methods for knot allocation involve knot
insertion or, on the contrary, knot reduction, i.e., certain
iterative processes whenwe start with an initial knot vector
and add new knots or remove certain existing ones and the
locations of other knots can be modified as well until some
pre-defined criterion on the residual error is satisfied.
Usually, an initial vector is chosen as a group of dense
knots for the knot removal procedure or a series of rather
sparse knots in case of the knot insertion operation. Un-
fortunately, so far at least as regards the DF spline
modeling in ellipsometry, a need for a careful treatment of
the optimal knot placement was mentioned rather briefly
[5, 28, 40, 41]. For example, Johs and Hale [28] and Gilliot
et al. [40, 41] used a multi-iteration knot adjustment as a
way to choose optimal knot locations based on the
“goodness of fit” between the reference and B-spline
modeled dielectric function [28] and the difference be-
tween modeled and experimental (Ψ, Δ)-spectra [40, 41].
Very recently, Mohrmann et al. [66] proposed a heuristic
“wavelength-range-expansion” algorithm for knot place-
ment with assistance of visual inspection of measured
data. However, these methods still may be called as “trial-
and-error” procedures and they require direct user inter-
vention and, therefore, are quite subjective, tend to be
time-consuming and may not be optimal. An interesting
knot insertion approach, guided by the magnitude of error
to the target function, has been proposed by Jacobson and
Murphy [89]. The approach is based on so-called force
equilibration scheme where an initial data fit is performed
using equidistant knot spacing and a position of each
additional knot, inserted into the knot vector on each
iteration, has to be estimated from mutual equilibrium
between attractive and repulsive “forces” acting on the

knot to be added. Those “forces” are defined as a product of
a squared error, occurring between the estimated and
target curves at certain position, and a distance from this
position to the newly added knot. The error function gets
updated after inserting each additional knot until final fit is
reached. Unfortunately, this technique still allows unde-
sirable redundant knots (knot multiplicity ξ > 1) in the knot
vector and, therefore, the continuity of theDF curvemay be
lost or corrupted (see Section 2.3).

Another way of looking at the non-equidistant knot
disposition is to implement so-called hierarchical B-spline
(HB-spline, for short) representation or its improved
modification based on truncated hierarchical B-splines
(THB-splines) [26, 90–92]. This approach combines several
hierarchical levels of equally-spaced fixed knots with
different knot resolutions (different knot spacing and/or
different spline degree); see Figure 13 for a sketch of 2-level
HB-splines (truncated and non-truncated). Since the knots
are fixed, the B-spline approximation is actually reduced to
a (simple) linear least-squares problem. In case of trun-
cated basis of hierarchical B-splines, the overlap of basis
functions at different levels can be decreased. The HB- and
THB-splines are locally supported, linearly independent,
non-negative and quite well suited for an effective knot
placement in different applications [26, 90–92].

Whenusing different, coarse and fine, knot resolutions
for the B-spline representation of the dielectric function,
we need to set some criterion for the spectral region sepa-
ration. As shown in Ref. [82], the detection of spectral re-
gions with sharp spectral features in the ε curve can be
achieved using the values of the first-order derivative of

Figure 13: Combination of the coarse (black) and fine (red) grid
basis functions of two levels produces the sets of (a) HB- and (b)
THB-splines.
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some function, to which we refer as a “target DF”, εtgt,
obtained from regression data analysis with a “skeleton” of
tremendous number of basis functions. The regions with
denser knot spacing are definedwhen the first derivative of
the εtgt curve exceeds a certain predetermined threshold
value. Finally, a numerical evaluation for the number of
knots for each region is performed by means of a specially
introducedmeasure, the Integral Span (IS), which acts as a
peculiar slope-weighting factor and also takes into account
the spectral interval width. We will not go much into
greater technical detail; please, see Ref. [82] for that. To
demonstrate the effectiveness of such, as we all realize,
heuristic procedure for composite B-spline knot allocation,
it was used to fit the SE data by the B-spline models for the
dielectric functions of bulk aluminum, silicon-on-insulator
(SOI), and nickel silicide thin films. As an example, the
imaginary (ε2) part of the SOI dielectric function is shown in
Figure 14. The SOI optical properties were described using
a B-spline model with different number of equidistantly or
not-equidistantly distributed knots. As a result, the IS
approach consistently outperforms traditional equidistant
setup and an acceptable fit is achieved with just 18
optimally-distributed knots (MSE = 1.943) as compared to
25 knots in equidistant arrangement (MSE= 1.964). Another
interesting fact, observed in the study, is a non-monotonic
MSE descending trend for the case of equally-spaced fixed
knot distribution and a presence of well-pronounced
MSE fluctuations on a plot of MSE versus total number of
knots (Figure 15). The proposed IS-based knot placement
scheme is free from such fluctuating behavior. Similar MSE
fluctuations in case of the equally-spaced knots were
also observed before [89]. The observed MSE fluctuations
indicate direct relationship between the type of knot dis-
tribution and the accuracy of the B-spline modeling.
In some sense, it resembles a discretization error in nu-
merical analysis when a numerical solution depends on a
grid quality, that is, resolution, density, etc., of a discrete
spatial domain.

There are also a number of other interesting studies
demonstrating the use of higher-order derivatives to
choose knot locations. For example, in the paper by Conti
et al. [93], the authors firstly derive certain smooth “refer-
ence function” as amodel for the approximate data and the
knots of a natural cubic spline are derived using a criterion
based on the third-order derivative of the “reference
function”, – onemay note that some sort of an analogy can
be drawn between the “reference function” and the “target
DF” εtgt from Ref. [82]. In the recent works by Yeh et al. [85]
and Michel and Zidna [86], the authors also have used
high-order derivatives for knot vector optimization

Figure 14: Two B-spline parameterizations of the SOI dielectric
function showing the DF imaginary part ε2 and corresponding spline
knot distribution.
(a) an equidistant knot placement for the whole analysis range from
1.4 to 4.6 eV (25 knots, MSE = 1.964); (b) an optimized knot
placement with four specially-spaced spectral regions (18 knots,
MSE = 1.943) (more details can be found in Ref. [82]).

Figure 15: Example of non-monotonic MSE trend from regression fit
of ellipsometric data for thin NiSi layer with a uniform B-spline knot
distribution; note that non-equidistant knot placement consistently
results in a smaller fitting error than conventional way of knot
allocation (see more details in Ref. [82]).
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(“derivative-informed knot placement” as itwas refereed in
Ref. [87]). Finally, Lenz et al. [87] introduced a Fourier-
informed knot placement scheme and also evaluated per-
formance of various combinations of this technique with
the derivative-informed method.

In conclusion, we note that everything articulated in
this section shows that a search for the optimal knot allo-
cation, no matter how it is performed, is still a hot topic in
progress. Obviously, a good knot-placement procedure can
provide a considerably bettermodeling accuracy in SE data
analysis. Nevertheless, there is a way to avoid a construc-
tion of complex non-equidistant knot vectors and keep
using simple evenly-spaced knots. Thereby, a special class
of B-splines, so-called P-splines (penalized B-splines), with
difference-based penalties and its application to the ellip-
sometric modeling will be discussed in the next section.

6 P-splines as B-splines with
roughness penalties in SE
analysis

As we already discussed in the previous section, the knot
selection (not even adjustment) problem has been the
subject of intensive research for a long time. However,
instead choosing the knot positions in one way or another,
it is possible to stay with an equidistant grid using a rela-
tively large number of knots and restricting resulted spline
curve flexibility by certain roughness penalty. The idea of
penalization is not new and can be traced back to, at least,
the development of Tikhonov regularization for ill-posed
problems [94, 95]. In 1986, O’Sullivan introduced a cate-
gory of penalized B-splines with a penalty based on the
integrated square of the second derivative of the curve [96].
Ten years later, Eilers andMarx eventually published, after
three rejections by journals, their manuscript on penalized
B-splines with a difference-based penalty [68, 97, 98]. This
penalty applies to the B-spline coefficients bi (see Equa-
tion (15)) to ensure that adjoining coefficients do not differ
too much from each other in some sense and produce
sufficiently smooth fitted curve. There are two important
ingredients in using penalized splines to represent the
dielectric function: the smoothing (or penalty) parameter
and the number of knots, – typically, the knot allocation is
simply equidistant, so the problem of optimal knot place-
ment is out of consideration. This is, possibly, one of the
primary causes that the authors of the book “Practical
Smoothing: The Joys of P-splines” [68] declare that P in the
spline name stands for practical.

Mathematically speaking, the smoothing B-spline

function S(x) (see Equation (15)) for the dielectric func-

tion ε is the function that minimizes the penalized least

squares error

∑
j
{ϵj − S(xj)}2 + α∑

i
(Δkbi)2, (27)

where the εj’s are the values of the non-smoothed dielectric
function εtgt at the spectral points xj, α is the non-negative
smoothing parameter which controls the influence of the
penalty and may be chosen by certain selection strategy or
just a trial-and-error tuning procedure, k is a positive
integer, Δk is the k-order difference operator defined by
means of Δ1bi = bi − bi−1, Δ2bi = Δ1(Δ1bi) = bi − 2bi−1 + bi−2,
Δkbi = Δ1(Δk−1bi) and the first sum is over all measured
spectral points xj. A second-order difference penalty,
i.e., k= 2, has become a common choice. Other orders of the
differences in the penalty can be also used to enforce shape
constraints. Eilers and Marx suggested that the number of
basis functions can be very large, even larger than the
number of data points, – but finite, of course. Thus, this
approach also overcomes the problem with optimal selec-
tion of the number of knots. This holds due to so-called
“power of penalty” property, explicitly formulated in
Ref. [98]: “The number of B-splines can be (much) larger
than the number of observations. The penalty makes the
fitting procedure well-conditioned. This should be taken
literally: even a thousand splines will fit 10 observations
without problems”. However, the truth is that the P-spline
approach still is not a magic bullet for SE data analysis
since it depends on an extra tuning parameter, namely, the
smoothing parameter α, which is the key element of
P-splines and must be chosen carefully. Unfortunately,
indeed there is no general consensus on how to estimate
this parameter although in the numerical analysis litera-
ture there are long-lasting discussions on various ap-
proaches in order to compute the optimal value of the
penalty. The most practical way, of course, is to inspect a
wide range of smoothing parameter α and “judge the re-
sults visually” (Ref. [68], p. 160). Nevertheless, it will only
work for a current set of data and might not be optimal for
further data evaluation. Therefore, the determination of
parameter α should somehow provide a prediction of yet
unmeasured data.

One of themost widely used penalty tuning algorithms
is a cross-validation (CV): the simplest for understanding
way to check the predictability performance is to select
certain trial value of α, remove onedata point, performdata
fit with selected value of α and then, using the estimated
function, predict the value of data point that was removed.
Such variant of CV is usually called the “ordinary” or
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“leave-one-out” procedure (also sometimes abbreviated as
OCV and LOOCV). Returning the removed data point to the
data set and repeating this procedure for each data point
yields certain prediction-error estimate for selected value
of α. Then calculating an average error on a grid of possible
values of parameter α, one can get some type of objective
function CV(α) and choose the “best” value of α by mini-
mizing (or maximizing) CV(α). However, despite its popu-
larity and apparent simplicity the LOOCV procedure comes
at the price of being computationally expensive, especially
for data sets with large number of points, – usually, the
“cost” of CV is of O(N2) where N denotes the sample size.
Interested readers will find more details on the cross-
validation based methods in Refs. [68, 99, 100]. Alterna-
tively, one can use information-based criteria, like AIC or
BIC, for the smoothing parameter selection. Multiple re-
searchers conducted a comprehensive comparison of
various smoothing parameter selection methods with
different computational complexity (see, for instance,
Refs. [101, 102]).

Also, as a naïve but practical procedure, one can use a
simple graphical method, known as the “L-method” [103],
for smoothing parameter selection. To illustrate that, we
consider the results of SE data analysis for a thin metal
layer of nickel-monosilicide (NiSi) [75]. The optical prop-
erties of the NiSi layer were represented by means of uni-
form B-splines with adjustable smoothing parameter. By
performing the data fitting, we can plot MSE values and
log-values of the MSE average rate of change as functions
of the smoothing parameter α (Figure 16). As one can
notice, the curves have two fairly flat regions on both the
left and right sides and a highly-curved transition area in

between. A case of α = 0 corresponds to unpenalized
dielectric function (see Equation (27)) and, therefore, the
lowest MSE value (remember that a very large number of
the B-spline functions has been usedwhich resulted in very
flexible B-spline curve). Both curves represent monotonic
functions, either increasing or decreasing, and the bending
point, where the rapidly changing functions MSE(α) and
log(dMSE)(α) are transformed into slowly changing ones, is
clearly visible (Figure 16). However, it is still not obvious
how to objectively choose an appropriate, say, optimal
value of the smoothing parameter beyond which the
quality of fit ceases to deteriorate significantly. In order to
determine the “best” value of α, the L-method fits a straight
line to the points on one side, say, the left, of the graph and
another line to the points on another side. An abscissa of
the intersection of these lines will approximately indicate
the required smoothing parameter value. The line fitting
should be performed for all possible pairs of lines with
different sequences of points by minimizing the total root-
mean-squared error, i.e., the combined MSE for the lines at
the left and right sides of the graph. Using the L-method,
one can find the point of maximum curvature in the MSE
average rate of change curve at α = 0.016 which we accept
as the optimal smoothing parameter value (Figure 16). The
details of the analysis can be found in Ref. [75].

Here, we want to highlight that only the simplest case
of P-spline formulation with a single, or global, smoothing
parameter, – that is, the amount of smoothing of the
dielectric function stays constant across the entire spectral
region, – has been considered. However, in case of the
complex-shaped dielectric functions, especially in a wide
UV-VIS-NIR spectral range, an introduction of a variable
smoothing parameter provides another possible way for
P-spline modeling. In other words, a value of α may vary
from one spectral region to another, for instance, based on
a changing curve smoothness or derivative variations.
Thus, further possible enhancement of the dielectric
function representation by P-splines should also include a
way for certain adaptive smoothing (see alsoRefs. [100, 104,
105] for more comprehensive details).

7 Concluding remarks

Dielectric function representation by various polynomial
spline functions has now developed into an efficient
method for accurate modeling of the material optical
properties in the SE data analysis. This review discusses
various ways of piecewise polynomial modeling of the
dielectric function with emphasis on the B(asis)-spline
functions. The history of the spline usage in a variety of

Figure 16: Profiles of MSE and logarithm of MSE difference quotient
(the average rate of change) against the smoothing parameter α and
determination the optimal α value using the L-method (see more
details in Ref. [75]).

D.V. Likhachev: Ellipsometric data modeling with splines 111



spectroscopic ellipsometry applications is about 30 years
long, although for the purpose of data analysis (the curve
fitting, in particular) in other fields of spectroscopy (e.g.,
Raman, electron and nuclear magnetic resonance spec-
troscopy, etc.) the splines have been used even earlier. And
over the course of time, the area of B-spline applications in
spectroscopy in general only expands into new practical
fields such as, for instance, mid-infrared spectroscopy,
imaging spectroscopy, gamma-ray spectra smoothing,
time-resolved photoelectron spectroscopy, deformable
image registration in medical image analysis and so on. As
we describe in the preceding sections, there are multiple
advantages in using the spline approximations for the
dielectric function modeling. First of all, the DF spline
representation allows an evaluation of the Kramers–Kronig
transforms analytically and also guarantees physically
reasonable results for the dielectric-function line shape.
Now, although the DF parameterization by physics-based
oscillator models allows direct determination of certain
important parameters such as the critical points and
bandgap energies, in industrial optical metrology there is
often necessary to simply model the material optical
properties for further thickness only measurements. And
such a practically important task can be achieved suc-
cessfully using various kinds of spline functions, without
any prior knowledge on the optical properties of the ma-
terial under test. Moreover, the spline approach should
provide a potential for the SE analysis automation in the
sense of recently published work by Oiwake et al. [106] to
eliminate the need for expertise from high-level metrology
specialist. Thus, we believe sincerely that the DF spline
parameterization is an essential and fascinating concept
that will continue to benefit the ellipsometric data
modeling in the forthcoming years. Nevertheless, still more
work is needed to implement already developed methods
and algorithms of polynomial spline theory looking at the
whole existing zoo of splines.
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