![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
CORRECTION article
Front. Microbiol. , 08 October 2020
Sec. Evolutionary and Genomic Microbiology
Volume 11 - 2020 | https://doi.org/10.3389/fmicb.2020.576322
This article is a correction to:
Assessing the Diversity and Distribution of Apicomplexans in Host and Free-Living Environments Using High-Throughput Amplicon Data and a Phylogenetically Informed Reference Framework
by del Campo, J., Heger, T. J., Rodríguez-Martínez, R., Worden, A. Z., Richards, T. A., Massana, R., et al. (2019). Front. Microbiol. 10:2373. doi: 10.3389/fmicb.2019.02373
In the original article, the reference for Kotabová et al., 2012 was incorrectly written as Kotabová, E., Vancová, M., Lukeš, J., Oborník, M., Modri, D., Lukeš, M., et al. (2012). Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the great barrier reef. Protist 163, 306–323. doi: 10.1016/j.protis.2011.09.001. It should be Oborník, M., Modrý, D., Lukeš, M., Cernotíková-Stríbrná, E., Cihlár, J., Tesarová, M., et al. (2012). Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the great barrier reef. Protist 163, 306–323. doi: 10.1016/j.protis.2011.09.001 Furthermore, the reference should be cited as Oborník et al. 2012.
In the original article Moore, R. B., Oborník, M., Janouškovec, J., Chrudimský, T., Vancová, M., Green, D. H., et al. (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451, 959–963. doi: 10.1038/nature06635 was not cited in the article. The citation has now been inserted in INTRODUCTION, Paragraph 3 and should read:
Understanding what this diversity and distribution means requires a more detailed dissection of which apicomplexans appear in which environments. This is currently not possible because we lack a robust phylogenetic framework (e.g., a reference tree) upon which to base such inferences. Moreover, it has5 recently been shown that the apicomplexans are the sister group to another odd collection of microbial predators (colpodellids) and putatively symbiotic algae (chromerids), collectively known as chrompodellids or “Apicomplexan-related lineages” (ARLs) (Leander et al., 2003; Moore et al., 2008; Oborník et al., 2012; Woo et al., 2015). These lineages have aided in understanding of how apicomplexans evolved to become parasites and the ecological conditions that might have led to this transition.
The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
Leander, B. S., Harper, J. T., and Keeling, P. J. (2003). Molecular Phylogeny and Surface Morphology of Marine Aseptate Gregarines (Apicomplexa): Selenidium spp. and Lecudina spp. J. Parasitol. 89, 1191–1205. doi: 10.1645/GE-3155
Moore, R. B., Oborník, M., Janouškovec, J., Chrudimský, T., Vancová, M., Green, D. H., et al. (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451, 959–963. doi: 10.1038/nature06635
Oborník, M., Modrý, D., Lukeš, M., Cernotíková-Stríbrná, E., Cihlár, J., Tesarová, M., et al. (2012). Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the great barrier reef. Protist 163, 306–323. doi: 10.1016/j.protis.2011.09.001
Keywords: apicomplexans, diversity, distribution, phylogeny, classification, metabarcoding, environmental sequencing, reference database
Citation: del Campo J, Heger TJ, Rodríguez-Martínez R, Worden AZ, Richards TA, Massana R and Keeling PJ (2020) Corrigendum: Assessing the Diversity and Distribution of Apicomplexans in Host and Free-Living Environments Using High-Throughput Amplicon Data and a Phylogenetically Informed Reference Framework. Front. Microbiol. 11:576322. doi: 10.3389/fmicb.2020.576322
Received: 25 June 2020; Accepted: 31 August 2020;
Published: 08 October 2020.
Edited by:
Ludmila Chistoserdova, University of Washington, United StatesReviewed by:
Isabelle Florent, Muséum National d'Histoire Naturelle, FranceCopyright © 2020 del Campo, Heger, Rodríguez-Martínez, Worden, Richards, Massana and Keeling. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Javier del Campo, amRlbGNhbXBvQHJzbWFzLm1pYW1pLmVkdQ==; Zm9uYW1lbnRhbEBnbWFpbC5jb20=; Patrick J. Keeling, cGtlZWxpbmdAbWFpbC51YmMuY2E=
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.