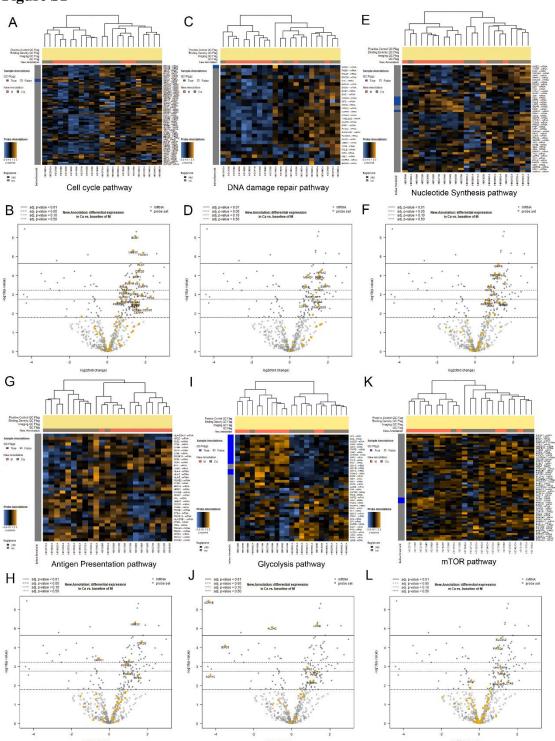
Table S1 Gene coverage across core metabolic themes of nCounter® Metabolic Pathways Panel.

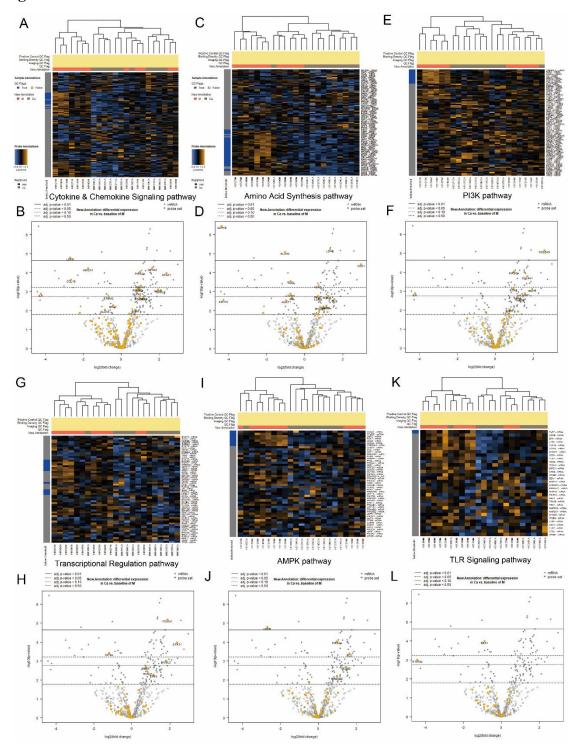
| Theme                                            | Description                                                                                                                                                                                                                                            | Pathways                                                                                                                                                                                                                                                                                                 | Number<br>of<br>Human<br>Genes | Number<br>of<br>Mouse<br>Genes |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|
| Biosynthesis<br>and Anabolic<br>Pathways         | The processes involved in the production of complex macromolecules by enzyme-catalyzed biosynthetic pathways. The products of these pathways are required for nearly all cellular functions, including proliferation.                                  | Amino Acid Synthesis, Arginine<br>Metabolism, Cell Cycle, Fatty Acid<br>Synthesis, Glutamine Metabolism,<br>Glycolysis, IDH1/2 Activity,<br>Mitochondrial Respiration,<br>Nucleotide Synthesis, Pentose<br>Phosphate Pathway,<br>Tryptophan/Kynurenine<br>Metabolism, Vitamin and Cofactor<br>Metabolism | 354                            | 348                            |
| Cell Stress                                      | Cells are impacted by the availability of nutrients and presence of toxic compounds. Adaptive responses to the stress are required for tumorigenesis, metastasis, and immune responses.                                                                | DNA Damage Repair, Hypoxia,<br>KEAP1/NRF2 Pathway, Reactive<br>Oxygen Response                                                                                                                                                                                                                           | 82                             | 82                             |
| Nutrient<br>Capture and<br>Catabolic<br>Pathways | The processes involved in the breakdown of macromolecules, scavenging of cellular materials, or import of nutrients in order to stimulate ATP production or fuel anabolic pathways.                                                                    | Amino Acid Transporters,<br>Autophagy, Endocytosis, Fatty<br>Acid Oxidation, Glucose Transport,<br>Lysosomal Degradation,<br>Nucleotide Salvage                                                                                                                                                          | 161                            | 159                            |
| Metabolic<br>Signaling                           | The pathways that are commonly disrupted in cancer cells or altered in immune cells that impact metabolic function. In the context of cancer, mutations allow these regulated signaling pathways to allow for metabolic change enabling tumorigenesis. | AMPK, mTOR, MAPK, Myc, NF-kB, p53 Pathway, PI3K, TCR and Costimulatory Signaling, TLR Signaling                                                                                                                                                                                                          | 237                            | 235                            |
| Transcriptional<br>Regulation                    | Processes involved in the alteration of epigenetic and transcriptional activity of the cell that enables sustained metabolic reprogramming. This reprogramming allows for tumorigenesis and underlies stable changes in immune cell phenotype.         | Epigenetic Regulation,<br>Transcriptional Regulation                                                                                                                                                                                                                                                     | 77                             | 69                             |


Table S2 Selected housekeeper genes for normalization.

| Gene Name     | Cono                | Order selected by | SD after      |
|---------------|---------------------|-------------------|---------------|
| Gene Name     | Gene                | geNorm            | normalization |
| EDC3-mRNA     | NM_001142443.1:1024 | 1                 | 0.234         |
| POLR2A-mRNA   | NM_000937.2:3775    | 2                 | 0.279         |
| COG7-mRNA     | NM_153603.3:1492    | 3                 | 0.319         |
| SDHA-mRNA     | NM_004168.3:342     | 4                 | 0.323         |
| NRDE2-mRNA    | NM_017970.3:3233    | 5                 | 0.341         |
| FCF1-mRNA     | NM_015962.4:1022    | 6                 | 0.401         |
| AGK-mRNA      | NM_018238.3:816     | 7                 | 0.364         |
| MRPS5-mRNA    | NM_031902.3:390     | 8                 | 0.403         |
| DHX16-mRNA    | NM_001164239.1:2490 | 9                 | 0.399         |
| DNAJC14-mRNA  | NM_032364.5:1166    | 10                | 0.38          |
| TBC1D10B-mRNA | NM_015527.3:2915    | 11                | 0.401         |
| SAP130-mRNA   | NM_024545.3:3090    | 12                | 0.446         |
| TLK2-mRNA     | XM_011524223.1:383  | 13                | 0.471         |
| STK11IP-mRNA  | NM_052902.2:565     | 14                | 0.505         |
| TBP-mRNA      | NM_001172085.1:587  | 15                | 0.514         |
| USP39-mRNA    | NM_001256725.1:806  | discarded         | 0.767         |
| OAZ1-mRNA     | NM_004152.2:313     | discarded         | 0.792         |
| G6PD-mRNA     | NM_000402.4:923     | discarded         | 0.875         |
| UBB-mRNA      | NM_018955.3:1052    | discarded         | 1             |
| ABCF1-mRNA    | NM_001090.2:857     | discarded         | 0.598         |

Table S3 mRNA normalization summary of samples.

| mRNA.normalization.factors HK.MS |             |          |  |
|----------------------------------|-------------|----------|--|
| H01166ca                         | 0.769476963 | 0.259346 |  |
|                                  |             |          |  |
| H01166m                          | -1.00153961 | 0.507071 |  |
| H01184ca                         | 0.70807074  | 0.547514 |  |
| H01184m                          | -1.15182492 | 0.427918 |  |
| H01215ca                         | -0.46183283 | 0.427621 |  |
| H01215m                          | -2.22956612 | 0.242699 |  |
| H01278ca                         | -0.18614079 | 0.069782 |  |
| H01278m                          | -0.98438077 | 0.159465 |  |
| H01346ca                         | 0.068790222 | 0.238649 |  |
| H01346m                          | -0.89711135 | 0.609704 |  |
| H01365ca                         | 0.282494597 | 0.087934 |  |
| H01365m                          | 0.209975806 | 0.119805 |  |
| H01186ca                         | -1.00118969 | 0.271501 |  |
| H01186m                          | 0.455831977 | 0.128761 |  |
| H01216m                          | 0.951287641 | 0.228739 |  |
| H01271ca                         | 0.851576425 | 0.17497  |  |
| H01271m                          | -0.2560087  | 0.223001 |  |
| H01384ca                         | 1.373016841 | 0.57622  |  |
| H01384m                          | 0.207630097 | 0.055594 |  |
| H01389ca                         | 1.399576888 | 0.184764 |  |
| H01389m                          | 0.529590925 | 0.274384 |  |
| H01406ca                         | 0.824294275 | 0.25412  |  |
| H01406m                          | -0.46201861 | 0.160228 |  |


Figure S1



## Figure S1 Analysis of significantly up-regulated signaling pathways and related genes in nCounter® Metabolic Pathways Panel between HSCC tissues and adjacent normal tissues.

A Heatmap of Cell Cycle pathway. B Volcano plot of Cell Cycle pathway. C Heatmap of DNA Damage Repair pathway. D Volcano Plot of DNA Damage Repair pathway. E Heatmap of Nucleotide Synthesis pathway. F Volcano plot of Nucleotide Synthesis pathway. G Heatmap of Antigen Presentation pathway. H Volcano plot of Antigen Presentation pathway. I Heatmap of Glycolysis pathway. J Volcano plot of Glycolysis pathway. K Heatmap of mTOR pathway. L Volcano plot of mTOR pathway.

Figure S2



## Figure S2 Analysis of Significantly down-regulated signaling pathways and related genes in nCounter® Metabolic Pathways Panel between HSCC tissues and adjacent normal tissues.

A Heatmap of Cytokine & Chemokine Signaling pathway. B Volcano plot of Cytokine & Chemokine Signaling pathway. C Heatmap of Amino Acid Synthesis pathway. D Volcano Plot of Amino Acid Synthesis pathway. E Heatmap of PI3K pathway. F Volcano plot of PI3K pathway. G Heatmap of Transcriptional Regulation pathway. H Volcano plot of Transcriptional Regulation pathway. I Heatmap of AMPK pathway. J Volcano plot of AMPK pathway. K Heatmap of TLR Signaling pathway. L Volcano plot of TLR Signaling pathway.

Figure S3

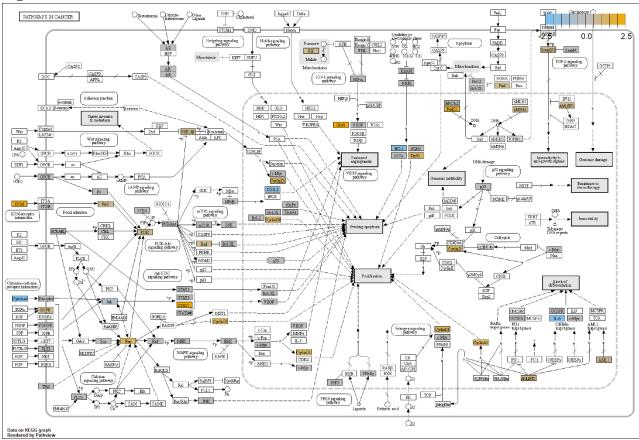



Figure S3 Analysis of altered gene in HSCC in cancer pathway.

For cancer KEGG pathways, genes within panels are mapped to pathways, and differential expression information is overlaid on protein-based KEGG pathway images.