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SUPPLEMENTARY METERIAL  
 
The Structure of Human Olfactory Space 
 
by Alexei A. Koulakov, Brian E. Kolterman, Armen G. Enikolopov, and Dmitry Rinberg 
 
ODORANTS INCLUDED IN THE ANALYSIS  
 
The following odorants were used from the Atlas of Odor Character profiles.  
 
1 698-10-2   Abhexone 
2 98-86-2   Acetophenone 
3 1122-62-9   Acetyl Pyridine: ortho-Acetyl Pyridine 
4 141-13-9   Adoxal 
5 77-83-8   Aldehyde C-16 (So-Called) Lower Concentration 
6 77-83-8   Aldehyde C-16 (So-Called) Higher Concentration 
7 104-61-0   Aldehyde C-18 (So-Called) 
8 123-68-2   Allyl Caproate 
9 123-82-2   Amyl Acetate: iso-Amyl Acetate 
10 540-18-1   Amyl Butyrate 
11 60763-41-9   Amyl Cinnamic Aldehyde Diethyl Acetal 
12 102-19-2   Amyl Phenyl Acetate 
13 2173-56-0   Amyl Valerate 
14 29597-36-2   Andrane 
15 104-46-1   Anethole 
16 100-66-3   Anisole 
17 89-43-0   Auralva 
18 100-52-7   Benzaldehyde 
19 119-84-8   Benzo Dihydro Pyrone 
20 5655-61-8   Bornyl Acetate: iso-Bornyl Acetate 
21 107-92-6   Butanoic Acid 
22 71-38-3   Butanol: 1-Butanol 
23 544-40-1   Butyl Sulfide 
24 67634-06-4   Butyl Quinoline: iso-Butyl Quinoline 
25 78-22-2   Camphor: dl-Camphor 
26 99-49-0   Carvone: l-Carvone 
27 87-44-5   Caryophyllene (beta and gamma Isomers) 
28 33704-61-9   Cashmeran 
29 17369-59-4   Celeriax 
30 89-68-9   Chlorothymol 
31 104-55-2   Cinnamic Aldehyde 
32 141-27-5   Citral 
33 5585-39-7   Citralva 
34 91-64-5   Coumarin 
35 108-39-4   Cresol: m-Cresol 
36 106-44-5   Cresol: p-Cresol 
37 140-39-6   Cresyl Acetate: p-Cresyl Acetate 
38 103-93-5   Cresyl Butyrate: p-Cresyl-iso-Butyrate 
39 104-93-8   Cresyl Methyl Ether: p-Cresyl Methyl Ether 
40 122-03-2   Cuminic Aldehyde 
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41 1423-46-7   Cyclocitral: iso-Cyclocitral 
42 55704-78-4   Cyclodithalfarol 
43 765-87-7   Cyclohexanedione: 1,2-Cyclohexanedione 
44 108-93-0   Cyclohexanol 
45 80-71-7   Cyclotene 
46 67634-23-5   Cyclotropal 
47 25152-84-5   Decadienal: 2,4-trans-trans-Decadienal 
48 91-17-8   Decahydro Naphthalene 
49 111-92-2   Dibutyl Amine 
50 352-93-2   Diethyl Sulfide 
51 10094-34-5   Dimethyl Benzyl Carbinyl Butyrate 
52 103-05-9   Dimethyl Phenyl Ethyl Carbinol 
53 5910-89-4   Dimethyl Pyrazine: 2,3-Dimethyl Pyrazine 
54 123-32-0   Dimethyl Pyrazine:  2,5-Dimethyl Pyrazine 
55 625-84-3   Dimethyl Pyrrole: 2,5-Dimethyl Pyrrole 
56 3658-80-8   Dimethyl Trisulfide 
57 4747-07-3   Diola 
58 101-84-8   Diphenyl Oxide 
59 105-54-4   Ethyl Butyrate 
60 105-37-3   Ethyl Propionate 
61 13925-00-3   2-Ethyl Pyrazine (Lower Concentration) 
62 13925-00-3   2-Ethyl Pyrazine (Higher Concentration) 
63 470-82-6   Eucalyptol 
64 97-53-0   Eugenol 
65 67634-15-5   Floralozone 
66 6413-10-1   Fructone 
67 98-01-1   Furfural 
68 98-02-2   Furfuryl Mercaptan 
69 88683-93-6   Grisalva 
70 90-05-1   Guaiacol 
71 111-71-7   Heptanal 
72 111-70-6   Heptanol: 1-Heptanol 
73 68-25-1   Hexanal 
74 142-62-1   Hexanoic acid 
75 111-27-3   Hexanol: 1-Hexanol 
76 623-37-0   Hexanol: 3-Hexanol 
77 6728-26-3   Hexenal: trans-1-Hexenal 
78 111-26-2   Hexyl Amine (Lower Concentration) 
79 111-26-2   Hexyl Amine (Higher Concentration) 
80 101-86-0   Hexyl Cinnamic Aldehyde 
81 90-87-9   Hydratropic Aldehyde Dimethyl Acetal 
82 107-75-5   Hydroxy Citronellal 
83 120-72-9   Indole 
84 67801-36-9   Indolene 
85 75-47-8   Iodoform 
86 14901-07-6   lonone: beta-lonone (Lower Concentration) 
87 14901-07-6   lonone: beta-lonone (Higher Concentration) 
88 79-69-6   Irone: alpha-lrone 
89 126-91-0   Linalool 
90 138-86-3   Limonene: d-Limonene 
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91 31906-04-4   Lyral 
92 67258-87-1   Maritima 
93 106-72-9   Melonal 
94 2216-51-5   Menthol: l-Menthol 
95 93-04-9   Methoxy-Naphthalene: 2-Methoxy Naphthalene 
96 134-20-3   Methyl Anthranilate 
97 462-95-3   Methyl Acetaldehyde Dimethyl Acetal 
98 1334-76-5   Methyl Furoate 
99 2271-428   Methyl-iso-Borneol:  2-Methyl-iso-Borneol 
100 491-35-0   Methyl Quinoline:  para-Methyl Quinoline 
101 2459-09-8   Methyl iso-Nicotinate 
102 119-36-8   Methyl Salicylate 
103 2432-51-1   Methyl Thiobutyrate 
104 1222-05-5   Musk Galaxolide 
105 1508-02-1   Musk Tonalid 
106 37677-14-8   Myracaldehyde 
107 143-13-5   Nonyl Acetate 
108 4674-50-4   Nootkatone 
109 111-87-5   Octanol: 1-Octanol 
110 3391-86-4   Octenol: 1-Octen-3-OL 
111 109-52-4   Pentanoic Acid 
112 591-80-0   Pentenoic Acid: 4-Pentenoic Acid 
113 103-82-2   Phenyl Acetic Acid 
114 536-74-3   Phenyl Acetylene 
115 60-12-8   Phenyl Ethanol (Lower Concentration) 
116 60-12-8   Phenyl Ethanol (Higher Concentration) 
117 78-59-1   Phorone: iso-Phorone 
118 80-56-8   Pinene: alpha-Pinene 
119 105-66-8   Propyl Butyrate 
120 135-79-5   Propyl Quinoline: iso-Propyl Quinoline 
121 111-47-7   Propyl Sulfide 
122 110-86-1   Pyridine 
123 94-59-7   Safrole 
124 69460-08-8   Sandiff 
125 115-71-9   Santalol 
126 83-34-1   Skatole 
127 10482-56-1   Terpineol, mostly alpha-Terpineol 
128 110-01-0   Tetrahydro Thiophene 
129 91-61-2   Tetraquinone 
130 36267-71-7   Thienopyrimidine 
131 123-93-3   Thioglycolic Acid 
132 110-02-1   Thiophene 
133 89-83-8   Thymol 
134 529-20-4   Tolualdehyde: ortho-Tolualdehyde 
135 108-88-3   Toluene (Lower Concentration) 
136 108-88-3   Toluene (Higher Concentration) 
137 75-50-3   Trimethyl Amine 
138 104-67-6   Undecalactone: gamma-Undecalactone 
139 112-38-9   Undecylenic Acid 
140 590-86-3   Valeraldehyde: iso-Valeraldehyde 
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141 503-74-2   Valeric Acid: iso-Valeric Acid 
142 108-29-2   Valerolactone: gamma-Valerolactone 
143 121-33-5   Vanillin 
144 122-48-5   Zingerone 
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PERCEPTUAL DESCRIPTORS 
  
1   FRUITY, CITRUS 
2   LEMON 
3   GRAPEFRUIT 
4   ORANGE 
5   FRUITY, OTHER THAN CITRUS 
6   PINEAPPLE 
7   GRAPE JUICE 
8   STRAWBERRY 
9   APPLE (FRUIT) 
10    PEAR 
11        CANTALOUPE,   HONEY   DEW MELON 
12       PEACH  (FRUIT) 
13       BANANA 
14       FLORAL 
15       ROSE 
16       VIOLETS 
17        LAVENDER 
18       COLOGNE 
19       MUSK 
20       PERFUMERY 
21        FRAGRANT 
22       AROMATIC 
23       HONEY 
24       CHERRY  (BERRY) 
25       ALMOND 
26       NAIL POLISH REMOVER 
27   NUTTY  (WALNUT ETC) 
28        SPICY 
29        CLOVE 
30       CINNAMON 
31        LAUREL  LEAVES 
32       TEA LEAVES 
33        SEASONING  (FOR MEAT) 
34       BLACK PEPPER 
35       GREEN PEPPER 
36       DILL 
37        CARAWAY 
38       OAK WOOD,   COGNAC 
39       WOODY,   RESINOUS 
40       CEDARWOOD 
41       MOTHBALLS 
42       MINTY,   PEPPERMINT 
43       CAMPHOR 
44       EUCALIPTUS 
45       CHOCOLATE 
46       VANILLA 
47        SWEET 
48       MAPLE  SYRUP 
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49       CARAMEL 
50       MALTY 
51        RAISINS 
52       MOLASSES 
53       COCONUT 
54    ANISE (LICORICE) 
55    ALCOHOLIC 
56    ETHERISH, ANAESTHETIC 
57    CLEANING FLUID 
58    GASOLINE, SOLVENT 
59    TURPENTINE (PINE OIL) 
60    GERANIUM LEAVES 
61    CELERY 
62    FRESH GREEN VEGETABLES 
63    CRUSHED WEEDS 
64    CRUSHED GRASS 
65    HERBAL, GREEN, CUT GRASS 
66    RAW CUCUMBER 
67    HAY 
68       GRAINY  (AS GRAIN) 
69       YEASTY 
70    BAKERY (FRESH BREAD) 
71    SOUR MILK 
72       FERMENTED  (ROTTEN)   FRUIT 
73       BEERY 
74       SOAPY 
75       LEATHER 
76       CARDBOARD 
77       ROPE 
78       WET PAPER 
79       WET WOOL,  WET DOG 
80       DIRTY LINEN 
81        STALE 
82    MUSTY, EARTHY, MOLDY 
83    RAW POTATO 
84    MOUSE 
85    MUSHROOM 
86    PEANUT BUTTER 
87    BEANY 
88       EGGY  (FRESH EGGS) 
89       BARK,   BIRCH BARK 
90       CORK 
91   BURNT, SMOKY 
92   FRESH TOBACCO SMOKE 
93   INCENSE 
94   COFFEE 
95   STALE TOBACCO SMOKE 
96   BURNT PAPER 
97   BURNT MILK 
98   BURNT RUBBER 
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99   TAR 
100    CREOSOTE 
101    DISINFECTANT, CARBOLIC 
102    MEDICINAL 
103    CHEMICAL 
104    BITTER 
105    SHARP, PUNGENT, ACID 
106    SOUR, VINEGAR 
107    SAUERKRAUT 
108    AMMONIA 
109    URINE 
110    CAT URINE 
111    FISHY 
112    KIPPERY (SMOKED FISH) 
113    SEMINAL, SPERM 
114    NEW RUBBER 
115    SOOTY 
116    BURNT CANDLE 
117    KEROSENE 
118    OILY, FATTY 
119    BUTTERY, FRESH BUTTER 
120    PAINT 
121    VARNISH 
122    POPCORN 
123    FRIED CHICKEN 
124    MEATY (COOKED, GOOD) 
125    SOUPY 
126    COOKED VEGETABLES 
127    RANCID 
128    SWEATY 
129    CHEESY 
130    HOUSEHOLD GAS 
131    SULFIDIC 
132    GARLIC, ONION 
133    METALLIC 
134    BLOOD, RAW MEAT 
135    ANIMAL 
136    SEWER 
137    PUTRID, FOUL, DECAYED 
138    FECAL (LIKE MANURE) 
139    CADAVEROUS (DEAD ANIMAL) 
140    SICKENING 
141    DRY, POWDERY 
142    CHALKY 
143    LIGHT 
144    HEAVY 
145    COOL, COOLING 
146    WARM 
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LIST OF PHYSICO-CHEMICAL PARAMETERS USED 
 
A more detailed description of the parameters is given at the bottom of the list. 
 
1  C 
2  H 
3  O 
4  N 
5  S 
6  I 
7  L 
8  molecular_weight 
9  molecular_volume 
10  molecular_length 
11  molecular_width 
12  molecular_depth 
13  density 
14  surface_area 
15  Log_Kow_fragments 
16  HLB 
17  solubility_parameter 
18  dispersion_3D 
19  polarity_3D 
20  hydrogen_bond_3D 
21  hydrogen_bond_acceptor 
22  hydrogen_bond_donor 
23  dipole_moment_debye 
24  hydrophilic_surface_area 
25  water_of_hydration 
26  boiling_point_C 
27  vapor_pressure_torr 
28  MR 
29  parachor 
30  connectivity_0 
31  connectivity_1 
32  connectivity_2 
33  connectivity_3 
34  connectivity_4 
35  valence_0 
36  valence_1 
37  valence_2 
38  valence_3 
39  valence_4 
40  kappa_2 
41  log_water_solubility 
42  Log_P__atom_based 
43  Z_chain_length 
44  glass_transition_temperature 
45  melt_transition_temperature 
46  water_content_30_RH 
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47  water_content_50_RH 
48  water_content_70_RH 
49  water_content_90_RH 
50  water_content_100_RH 
51  molar_volume 
52  Surface_tension 
53  Viscosity_cp_at_25C 
54  Surface_tension_in_water 
55  Critical_Temperature_K 
56  Critical_Pressure_bar 
57  Normal_Boiling_Point_K 
58  Normal_Freezing_Point_K 
59  Enthalpy_of_formation 
60  Gibbs_energy_of_formation 
61  enthalpy_of_vaporization 
62  enthalpy_of_fusion 
63  liquid_viscosity 
64  heat_capacity_25C 
65  Effective_number_of_torsional_bonds 
66  hydrogen_bond_number 
67  Entropy_of_boiling_JKmol 
68  Heat_capacity_change_on_boiling_JKmol 
69  CIM_1 
70  CIM_2 
71  CIM_3 
72  CIM_4 
73  CIM_5 
74  CIM_6 
75  CIM_7 
76  CIM_8 
77  CIM_9 
78  CIM_10 
79  Polar_surface_area 
80  C1C 
81  C1H 
82  C1O 
83  C1N 
84  C1S 
85  C1I 
86  C1L 
87  H1O 
88  H1N 
89  H1S 
90  S1S 
91  C2C 
92  C2O 
93  C2N 
94  C3C 
95  C3N 
96  C1C1C 
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97  C2C1C 
98  C1C1H 
99  C2C1H 
100  C3C1H 
101  C1C1O 
102  C1C2O 
103  C2C1O 
104  C1C1N 
105  C1C2N 
106  C1C3N 
107  C2C1N 
108  C1C1S 
109  C2C1S 
110  C2C1L 
111  C1O1C 
112  C1O1H 
113  C1N1C 
114  C2N1C 
115  C1N1H 
116  C1S1C 
117  C1S1S 
118  H1C1O 
119  H1C2O 
120  H1C1N 
121  H1C2N 
122  H1C1S 
123  O1C1O 
124  O2C1O 
125  O1C1S 
126  S1S1S 
 
Parameters 1-7: These parameters represent atom counts per molecule [C (carbon) through L 
(chlorine)]. 
 
Parameters 8-79: These parameters were calculated by the Molecular Modeling Pro software 
(ChemSW, Fairfield, CA, USA). The algorithms for calculating these parameters are described below:  

Calculations made by Molecular Modeling Pro: 

Mass, size 

 Molecular weight 
 Van der Waals volume (calculated with geometry) 
 Molar volume (van Krevelen type method) 
 Surface area (calculated with geometry) 
 Length, width, depth (current, maximum and minimum calculated by geometry) 
 Density (proprietary method for small molecules) 
 Mass Percent 

Partition coefficients, hydrophobicity, solubility etc. 
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 Log water octanol partition coefficient (4 methods, Fragment addition generally following the methods of 
Hansch and Leo, atom based generally following Ghose and Crippen, charge and atom based, and Q 
Log P after N. Bodor and P. Buchwald, J. Phys. Chem. B, 1997, 101: 3404-3412) 

 HLB (hydrophilic lipophilic balance, proprietary method) 
 Hydrophilic surface area (proprietary method) 
 Percent hydrophilic surface area (proprietary method) 
 Polar surface area (J. Med. Chem. 43: 3714-3717) 
 Hydration number 
 Water solubility (after Klopman et.al. J. Chem. Inf. Comput. Sci. 32:474 and S. Yalkowsky, J. Pharm 

Sci., 70:971) 
 Olive oil gas partition coefficient (after Klopman et.al. J. Med. Chem. 43: 3714-3717) 

Properties used in QSAR 

 Sterimol properties (L1, B1, B2, B3, B4, B5 and 3 more) 
 Hammett Sigma (sigma para, meta, sigma induction (SIND), sigma star)(proprietary method) 
 MR (molar refractivity after Ghose and Crippen) 

Dipole moment and other charge related properties 

 Dipole moment (Modified methods based on Del Re method: G. Del Re, J. Chem. Soc. 4031 (1958); D. 
Poland and H.A. Scheraga, Biochemistry 6: 3791 (1967); Coefficients modified in MAP 4.0 to take into 
account pi contributions ; PEOE method: J. Gasteiger and M. Marsili, Tetrahedron 36:3219 (1980); 
MPEOE (DQP) method: K.T. No, J.A. Grant and H.A. Scheraga, J. Phys. Chem. 94:4732 (1990) and 
K.T. No, J.A. Grant, M.S. Jhou and H.A. Scheraga, J. Phys. Chem. 94: 4740 (1990); J.M. Park, K.T. 
No, M.S. Jhou and H.A. Scheraga, J. Comp. Chem. 14:1482 (1993). Semi-empirical Quantum 
Mechanics methods in CNDO and MOPAC are alternative methods used by MMP to calculate dipole 
moment. 

 Partial charge (many methods - see Dipole moment) 
 HOMO/LUMO (via CNDO or MOPAC) 
 Hydrogen bond acceptor and donor from charge calculations 

Connectivity indices 

 Randic, Hall, Kier type connectivity indices 0-4 
 Randic, Hall, Kier type valence indices 0-4 
 Kier type Kappa shape index 2 
 Wiener index 
 Chemically Intuitive Molecular Index (F. Burden, Quant. Struct.-Act.Relat. 16:309-314 (1997)) 

Thermodynamics 

 Critical temperature, pressure and volume (after Joback and Reid) 
 Normal boiling and freezing point (after Joback and Reid) 
 Enthalpy of formation, ideal gas at 298 K (after Joback and Reid) 
 Gibbs energy of formation, ideal gas, unit fugacity at 298 K 
 Enthalpy of vaporization at the boiling point (after Joback and Reid) 
 Enthalpy of vaporization at the boiling point (after Joback and Reid) 
 Enthalpy of fusion (after Joback and Reid) 
 Liquid viscosity (after Joback and Reid) 
 Heat capacity, ideal gas (after Joback and Reid) 
 Effective number of torsional bonds (tau) (after S. Yalkowsky et.al.) 
 Hydrogen Bond Number (after S. Yalkowsky et.al.) 
 Entropy of boiling (after S. Yalkowsky et.al.) 
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 Effective number of torsional bonds (tau) (after S. Yalkowsky et.al.) 
 Heat capacity change on boiling (after S. Yalkowsky et.al.) 
 Vapor pressure (after S. Yalkowsky et.al.) 
 Vapor pressure (after The Handbook of Chemical Property Estimation Methods) 
 Boiling point (after The Handbook of Chemical Property Estimation Methods) 
 Parachor (after The Handbook of Chemical Property Estimation Methods) 

More properties are available through the MOPAC program included., such as heat of formation, ionization 
potential and many more. 

Polymer and Surfactant properties 

 Solubility parameter 
 3-D solubility parameters (dispersion, polarity and hydrogen bonding) 
 Water content of polymers at different relative humidities 
 Melt transition temperature 
 Glass transition temperature 
 Chain length (van Krevelen Z) 
 Surface tension of liquids 
 Surface tension in water 
 Molecular weight, molar volume, van der Waals volume, surface area (listed above) 
 HLB, hydrophilic surface area, % hydrophilic surface area (listed above) 

Parameters 80-95: Number of pairs per molecule (C1C or C-C through C3N or CN) 
 
Parameters 96-126: Number of triples per molecule (C1C1C stands for C-C-C, while S2S1S 
represents S=S-S). All triples observed had linear topology. No loops were observed in triples. 

 
 
 
 

PCA ANALYSIS OF THE PHYSICO-CHEMICAL PARAMETER SPACE 
 
We have conducted a basic PCA analysis of the previously enumerated physical parameters for the 
odorants used in the AOCP database (Dravnieks dataset). This analysis was performed without using 
any of the perceptual information contained in the AOCP database. As such, it reflects the structure 
of the physico-chemical space alone. The results are shown in Supplementary Figure 1. Figure 1A 
shows that 3 PCA dimensions cover nearly 80% of the variance. Figures 1B-1D show the weight with 
which each parameter contributes to each PCA dimension. The parameters contributing the most to 
the first 2 PCA dimensions are those which count the number of carbon atom pairs and triples 
(including double bonds). That these contributions dominate is to be expected given these values are 
directly related to the chemical formula of each molecule and as such, act as good discriminators. 
The third PCA dimension involves a much more complicated combination of parameters which do not 
suggest any immediate interpretation. PCA dimensions of molecules’ properties are expected to be 
strongly dependent by the choice of these properties and may reflect the redundancies in this choice. 
Redundant properties or their combinations are expected to contribute strongly to the principal 
components. That these results are different from those in found in the main text (Table 1) is due to 
the fact that in the main analysis we sought correlations between the parameters and the perceptual 
dimensions on the basis of multiple linear regression, which is a different form of analysis from PCA. 
The interpretation of this difference is that the olfactory system discriminates molecules based on 
features which are more subtle than the dominant ones shown by PCA. We also show below that 
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PCA dimensionality of the semantic space used in AOCP database is sufficiently high (~60D), which 
implies that semantic descriptors used by database are not overly redundant.  
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Supplementary Figure 1. PCA of odorant physico-chemical parameters. (A) Fraction of variance 
explained vs. number of included PCA dimensions. (B), (C) & (D)  Weights of individual physico-
chemical parameters contributing to the first 3 PCA dimensions. The horizontal axis also contains 
markings indicating the corresponding block of molecular parameters: element counts (C1), Molecular 
modeling Pro physico-chemical parameters (PHYS CHEM), pairs counts (C2), and triples counts 
(C3). CIM is the block of ten Burden chemical intuitive indexes.  

 



 14 

 
 

 
Supplementary Figure 2. Equilibrating the density of the odorants in two dimensions. Left: the 
original set of odorants projected onto a flat 2D space and Delaunay triangulated. Right: the same set 
of odorants after relaxing the elastic energy of edges that are assumed to be springs with unit 
equilibrium length and the same elastic coefficient. The transformation (arrow) was constrained to be 
of second order as in equation (1) of the main text. The final two coordinates were studied for 
correlations with the structural and physico-chemical parameters (Table 1, Supplementary figure 3).  
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Supplementary Figure 3. The results of greedy algorithm for elevation (A) and azimuth (B) variables 
on the 2D fit to psychophysical data. Pearson correlation coefficient is shown as a function of the 
number of physico-chemical/structural parameter (see above). Three iterations are shown for each 
parameter by three lines with dots. The parameters yielding maximal correlation on each iteration are 
shown by the red dots. Some parameters are highlighted, such as Carbon count (R=0.50), hydrophilic 
surface area (R=0.33), and water of hydration (R=0.33). Horizontal axis also contains markings 
indicating the corresponding block of parameters included: element counts (C1), Molecular modeling 
Pro physico-chemical parameters (PHYS CHEM), pairs counts (C2), and triples counts (C3). CIM is 
the block of ten Burden chemical intuitive indexes.  
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THE PERCEPTUAL SPACE OF MIXTURES 
 
List of 15 mixtures from the AOCP database used in the analysis  
 
01 Cedartone         MIXTURE OF HYDROCARBONS FROM AMERICAN CEDARWOOD ACETYLATED 
02 CedroneS         MIXTURE OF OXYGENATED CEDARWOOD HYDROCARBONS 
03 Cinnamon Bark Oil (Ceylon)        MAJOR COMPONENTS: CINNAMALDEHYDE EUGENOL ACETEUGENOL 
04 Cinnamon Leaf Oil  (Ceylon)        MAJOR COMPONENT: EUGENOL 
05 Clove Bud Oil         MAJOR COMPONENTS: EUGENOL 
06 Eucalyptus Oil         MAJOR COMPONENT: CITRONELLAL 
07 Garlic Oil          MAJOR COMPONENTS: ALLICIN 
08 Oenantic Ether        MIXTURE OF ETHYL ESTERS OF THE FATTY ACIDS ISOLATED FROM COCONUT OIL 
09 Onion Oil         MAJOR COMPONENTS: ORGANIC SULFIDES 
10 Patchouli Oil         MAJOR COMPONENT: PATCHOULI ALCOHOL 
11 Perfume "Charlie"       COMMERCIAL PERFUME 
12 Phenoxaflor         A FRAGRANCE  COMPOUND WITH ROSE CHARACTER 
13 Pyrroline + Pyrrolidone (mixture)        3-Pyrroline 
14 Rosemarel         MIXTURE OF COMPOUNDS A AND B COMPOUND A: BETA-PINENE EPOXIDE 
15 Spearmint Oil        MAJOR COMPONENT:   L-CARVONE 
 
ANALYSIS OF THE SEMANTIC SPACE 
 
As stated in the main article, the dimensionality of the olfactory space was determined using the 
results of odorant profiling in which a set of 146 semantic perceptual descriptors were used. The 
methodology of this study is outlined in (Dravnieks, 1982). They create odor profiles by presenting an 
odor to a participant and have them rate each of the 146 semantic descriptors by applicability. Using 
a large number of participants allows for the calculation of the percentage of applicability for a given 
descriptor to a particular odorant. They find this method generates odor profiles that give high 
correlations (p < 0.001) when confronted by the results of an earlier study using a nearly independent 
set of participants. This stability of the odor profiles in the Dravnieks catalog makes their results an 
excellent basis for the study we present in the main article. However, there is an important question 
that needs to be answered about how independent these semantic descriptors are.  
 
If the descriptors were essentially synonymous, the low dimensionality of the olfactory space could be 
attributed to the dependencies between descriptors. The redundancy between descriptors could 
render the semantic space spanned by them low dimensional, imposing low dimensionality on the 
odorant space. On the face of things, the descriptor space in the Dravnieks catalog has 146 
dimensions. However, if the perceptual descriptors used in this psychophysical study are related to 
one another (in a semantic sense), the dimensionality of the semantic space may be considerably 
lower. Therefore, here we will study the dimensionality of the semantic space of the descriptors used 
in the AOCP catalog. We will argue that the dimensionality of the semantic space spanned by these 
descriptors is substantially larger than the dimensionality of the olfactory space based on the study of 
texts found by web searches, as described below.  
 
To evaluate the lower bound on the dimensionality of semantic space we employed a “bag-of-words” 
technique in this analysis (Manning and Schütze, 1999). For each perceptual descriptor (PD), a 
Google search was performed. Links provided by the search were collected for a given number of 
result pages. Each link was then followed and all formatting strings were removed (scripts, html tags, 
etc.). What is left over was the main text of the website. Of course, some of the search results link to 
pages that cannot be treated in this manner (e.g. flash sites, Word docs, pdfs etc.). These links were 
excluded from this analysis. The “bag-of-words” for the PD was constructed by saving a specified 
number of words surrounding each instance of the PD in the website text (contextual window). As we 
are only interested in comparing substantive words between different PDs, all closed-class words (i.e. 



 17 

articles, pronouns, prepositions etc.) were then removed. Performing this process over many search 
results allowed us to calculate the probability of finding a given word within the specified contextual 
window for the PD of interest. After completing the procedure for the entire list of PDs we created a 
probability matrix where columns corresponded to one PD and the rows to the entire set of words 
found for all 146 PDs. Performing principle component analysis on this matrix allowed us to calculate 
the variance covered for the number of Euclidean “dimensions” included.  
 
We carried out this analysis using a mean of 50 different websites for each of the 146 PDs with a 
contextual window of 20 words. The mean number of words (not unique) for each PD is found to be 
~13000. The number of unique words is about a factor of 10 less. The results of the analysis can be 
seen in Supplementary Figure 4. The dimensionality of the PD semantic space found using this 
method is approximately 28 times larger than that found for the olfactory space. For example, the 
(non-jackknife) variance covered by the curved 2-D manifold is approximately 56% (Figure 1E, main 
text). The same amount of variance can be explained by including 56 dimensions of the semantic 
space (Supplementary Figure 4). We conclude that the semantic space spanned by the descriptors 
used in (Dravnieks, 1985) is substantially higher dimensional than the space formed by the odorants.  
 
To verify that this result is statistically stable we reduced the number of websites included by a factor 
of two (from 50 to 25 for each PD). After conducting the same PCA analysis, we find that the amount 
of variance covered as a function of the number of included dimensions is very similar to the full 
analysis (Supplementary Figure 4, green dashed line). The number of dimensions corresponding to 
56% variance is 55 (vs. 56 for the analysis with full dataset, as described above). We conclude that 
the estimate for the dimensionality of the semantic space of PD used by the AOCP is stable with 
respect to the statistical variability in the search data. The dimensionality of the semantic space is 
therefore substantially larger than the dimensionality of olfactory space. Although 56% of variance of 
olfactory data can be explained by 2 curved dimensions, the same amount of variance in the 
semantic space can be accounted for by 56 dimensions.  
 
As an additional check we have run the same analysis, however, this time including the word 
'olfaction' in the search for each PD. This method is expected to bias the searches toward the texts 
that have relevance to olfaction and analyze the descriptors in the olfactory context. This method of 
sampling is expected therefore to lower the dimensionality of the semantic space. It is not clear if this 
method of sampling can isolate the influence of context from the effects of olfactory percepts that, as 
we know from the main text, can be viewed as low-dimensional. Despite these limitations, we expect 
that the searches related to olfaction can provide the lower bound for the dimensionality of the 
semantic space relevant to olfaction. Supplementary Figure 5 shows the result of this analysis. The 
effect of requiring each PD search to have a bias toward olfaction has the expected result of reducing 
the overall dimensionality of the PD space. However, this dimensionality is still approximately 22-24 
times larger than that of the olfactory space found in the main article. More precisely, at the level of 
56% of the variance, the olfactory space can be accounted for by a 2D curved manifold (non-
jackknifed data is used here, as PCA of the semantic space is not jackknifed). The same amount of 
variance is captured by 47 dimensions of the semantic data. When only 50% of the websites are 
used, the dimensionality at 56% variance level can be estimated to be 44. We conclude that the 
semantic space is 22-24 times higher dimensional than the olfactory space. The correlations in the 
olfactory space reported in the main text are therefore not caused by a poverty of diversity in the 
semantic space.  
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Supplementary Figure 4. The dimensionality of semantic space. Percent variance explained vs. number of 
included PCA dimensions for the semantic space of the 146 perceptual descriptors used in the psychophysical 
study (blue line). The red line shows the variance captured by the 2-D curved surface found in the main 
analysis. The intersection is at 56 dimensions. The dimensionality of the semantic space spanned by 
descriptors is therefore 28 times larger than the dimensionality of the olfactory space. The green dashed line 
shows the results of PCA with 50% of data used (25 vs. 50 web pages per PD).  
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Supplementary Figure 5. Percent variance vs. number of included PCA dimensions for the semantic space of 
the 146 perceptual descriptors plus the term “olfaction” (blue line). The red line shows the variance captured by 
the 2-D curved surface found in the main analysis. The intersection is at 47 dimensions. The green dashed line 
shows the results of PCA with 50% of data used (25 vs. 50 web pages per PD). The intersection with the red 
line is at 44 dimensions. 
 
 



 19 

OTHER METHODS OF ANALYSIS 
 
Here we applied other published methods to embed the perceptual data into a low-dimensional 
subspaces. These methods include Isomap (Tenenbaum et al., 2000) and locally linear embedding 
(LLE) (Roweis and Saul, 2000). We argue here that these methods give similar results to the method 
used by us. Because several elements needed for our purposes are not developed in these two 
methods, we employed the method of non-linear regression described in the main article. Here we 
report the results of applying both Isomap and LLE.  
 
Isomap (IM) 
 
In this method the shortest path between every two points is first calculated on the basis of the graph 
that includes K nearest neighbors. Because only proximal points are used in evaluating the distances, 
this "geodesic" distance is expected to perform better for the data in which large distances are 
inaccurate. The classical MDS algorithm is then performed with this set of pair-wise distances to 
establish the coordinates of points in the embedded space. We downloaded the algorithm from the 
authors' website (http://waldron.stanford.edu/~isomap/). The results of applying this algorithm to the 
AOCP database are shown in the Supplementary Figure 6. As shown in Supplementary Figure 6A, 
the 3D embedding can account for 87% of variance in the data (note here that this number does not 
pertain to the original perceptual data but to the variability of "geodesic" distances calculated on the 
graph of nearest neighbors, see below). The 3D embedding is shown in Supplementary Figure 6B. It 
is clear that the odorant in the plane defined IM dimensions 1 versus 2 show a configuration similar to 
the letter "C" reported in the main text (cf. Figure 1B). The IM dimension number 1 can therefore be 
mapped upon perceptual dimension number one (pleasantness, elevation on the 2D manifold) 
reported in the main text and found by our method. To confirm this, we show in Supplementary Figure 
6D the plot of elevation coordinate versus IM dimension 1 that displays the high level of correlation 
(R=0.94). We therefore interpret the first Isomap dimension as elevation in our method on 
embedding. The IM dimension number 3 can be mapped upon the second perceptual dimension 
(azimuth or hydrophobicity). Indeed, as we show in Supplementary Figure 6F, the two variables show 
a high degree of correlation (R=0.74). These identifications are further shown by the color coded 
elevation and azimuth in Supplementary Figures 7C and E respectively. We argue that our method of 
analysis gives results similar to Isomap (Tenenbaum et al., 2000). 
 
Although the results of Isomap embedding are quite impressive (Supplementary Figure 6A), several 
features of this algorithm may require further development. First, the included variances are 
calculated on the basis of geodesic distances, and, as such, do not reflect directly the included 
variance in the original data. Because the geodesics are evaluated on the subspace of restricted 
dimensionality, variability within the subspace is expected to be lower than that in the original data. 
Second, it is not clear how to establish a mapping between the direct space and the embedded 
space. For the forward mapping (direct space -> embedded space) one could just rerun the algorithm 
for every new point added. The reverse mapping is not clear. This reverse mapping is used in our 
analysis to validate the results of embedding. Indeed, by removing the odorants from the database, 
calculating the embedding, and finding the smallest distance between the embedded space and the 
removed point (jackknife analysis) we were able to determine whether our embedding generalizes on 
odorants not included in the database. The calculations require a model for the position of the 
embedded space in the original data space, i.e. the reverse mapping. These limitations restrict 
embedding quality control within the Isomap method.  
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Supplementary Figure 6. The results of analysis of the same dataset using the Isomap algorithm. (A) The 
fraction of variance explained by Isomap as a function of the number of included dimensions. The fraction is 
calculated on the basis of geodesic pairwise distances. (B) The embedding in 3D can that can explain 87% of 
data. The red color represents the first perceptual dimension identified in the main paper. The data points 
reside near a letter "C" as in the main paper (Figure 1B). The links between points represent connections to 
the nearest neighbors (K=7) used to calculated the shortest pairwise distances (geodesics). (C) The view on 
the same set of points from the direction of Isomap (IM) dimension 2. IM dimension 1 clearly correlates with the 
first perceptual dimension discussed in the main paper (redness of points). (D) This is confirmed by high 
degree of correlation between two variables. (E) Similarly, IM dimension 3 correlates with the second 
perceptual dimension (azimuth). (F) The correlation between these two variables obtained from different 
analyses is high. The correlation between IM dimension 2 and azimuth is lower (R=0.20, not shown). We 
conclude that IM yields similar results to our analysis with IM dimensions 1 and 3 identified with elevation and 
azimuth coordinates respectively. 
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Local Linear Embedding (LLE) 
 
In this algorithm a set of weights is found that relates each point to K of its nearest neighbors. The 
weights are found by minimizing the squared error between the position of the point and the linear 
weighted sum of the neighbors. The weights are expected to carry information about local 
neighborhoods in the dataset. The low dimensional embedding is then found that minimizes the same 
error for points of lower dimensionality by optimizing their positions with the weights fixed (Roweis 
and Saul, 2000). Because the sets of weights are the same for high and low dimensional data, the 
local neighborhood relationships are expected to be preserved approximately by the algorithm.  
 
We applied the LLE algorithm to the AOCP dataset (Supplementary Figure 7). The algorithm was 
downloaded from the author's website (http://www.cs.nyu.edu/~roweis/lle/code.html). We used K=20 of 
nearest neighbors, as recommended by (Roweis and Saul, 2000). The results of these calculations 
agree to a large degree with the results presented in the main article. Thus the LLE dimension 1 
correlates strongly with the first perceptual dimension identified in the main article (elevation or 
pleasantness, Supplementary Figure 7 A and B). The second LLE dimension is correlated strongly 
with the second perceptual dimension identified in the main article (azimuth or hydrophobicity). We 
conclude therefore that the non-linear embedding method used in the main paper yields similar 
results to a related embedding method (LLE).  
 
There are several ways how the LLE algorithm could be further extended to facilitate application to 
olfactory data. First, the embedding provides no quality control; the variance in the data accounted for 
is not available using this method. Second, similarly to Isomap, no mapping from the embedded 
space to the original data space is provided. It is therefore not possible to evaluate the embedding 
quality for novel odorants that were not included in the calculation of the embedding space. The 
validation of the results of this embedding is not readily possible.  
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Supplementary Figure 7. The results of analysis of the AOCP dataset using Locally Linear Embedding (LLE) 
algorithm. (A) The embedding of the AOCP dataset into 2D space. The dots represent individual odorants 
positioned in the 2D embedded space by the LLE algorithm. The degree of red color represents the first 
perceptual dimension identified in the main paper. K=20 neighbors were used in LLE algorithm. No data about 
the fraction of variance of data covered by the embedding is provided by the algorithm. The first perceptual 
dimension appears to correlate with LLE dimension 1. (B) The high correlation between the first perceptual 
dimension (elevation) and LLE dimension 1 is confirmed by the high Pearson correlation coefficient (R=0.88). 
(C) The same embedding with the degree of green color representing the second perceptual dimension 
identified in the main study. (D) The correlation between the second perceptual dimension (azimuth) and the 
second dimension identified by LLE is high (R=0.59). On the basis of these findings we conclude that 2D LLE 
yields similar results to our analysis with LLE dimensions 1 and 2 identified with elevation and azimuth 
coordinates respectively. 
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DETAILED METHODS 
 
Preparation of responses for analysis. Responses to 144 odorants were obtained from Ref. [(Dravnieks, 
1985)] and represented in a set of 146D vectors ir


 (i=1…144). We used percent used (PU) set of responses 

from Ref [(Dravnieks, 1985)]. PU  describes the fraction of about 150 observers that thought that a given 
descriptor applies to an odorant. We verified that our conclusions do not change substantially if other 
parameters are used instead of PU, such as PA.  
 
All computations were performed using MATLAB (Mathworks, Inc.) Before applying PCA we normalized 
response vectors to have unit length in terms of the 2L  measure. This implies that the vectors resided on a unit 
sphere in 146D. This reduced somewhat the dimensionality of the dataset to 145D. The normalization step was 
intended to equalize the odorants in their perceived intensity or concentration. We verified that our conclusions 
do not change qualitatively if other measures ( 2L  through 9L ) are used for normalization. We noticed some 
deterioration of the fits beyond this range. For further analysis the data were centered so that the mean 
response to each semantic descriptor is zero. This step resulted in the response matrix R̂  that contained 
responses to individual odorants in its columns. It was therefore 146 (number of descriptors, height) by 144 
(number of odorants, width). The elements in the rows are centered i.e. have zero mean.  
 
Principal component analysis (PCA). The matrix of responses was represented as T TR USV  using SVD 
algorithm. Here U  and V  are 144 by 144 and 146 by 146 orthogonal matrices ( T TV V U U I  ) and S  is the 
144 by 146 diagonal matrix. The principal components are contained in the columns of 144 by 146 matrix 

TY R V . Thus, the first three columns of Y  were used to visualize data in Figures 1A and B. The variance 
explained by each PC is equal to the diagonal elements of diagonal matrix S . In Figure 1E the cumulative 
variance is shown as a fraction of total variance ( 2

ij
ij

R ). The first n columns of the orthogonal matrix 

V represent a projection operator nP  onto the n-D PCA space. The PC loadings can be found as the 
coefficients in the columns of matrix V . 
  
The inverse participation ratio. This measure is commonly used to evaluate how many parameters 
contribute to data in a threshold-free manner (Eriksen et al., 2003). Thus, here we wanted to evaluate how 
many perceptual descriptors contribute to PC1 and PC2 of the data. To this end we calculated the participation 
ratio for the loading of each PC 
 4

n in
i

P V . (1.1) 

We then calculated the inverse participation ratios as 1/n niP P . These variables describe how many semantic 
descriptors contribute to each PC. Indeed, assume that d  descriptors contribute to a PC uniformly. Assume 
that other descriptors do not contribute. This implies that the value of each descriptor loading is 1/ d  due to 
normalization ( 2 1in

i
V  ). The value of the participation ratio is then 1/nP d , while the inverse participation 

ratio is 1/n niP P d  , i.e. describes accurately the number of non-zero loadings. For the olfactory data the 
number of contributing loadings was found to be 1 17iP  , 2 23iP  , and 3 26iP  . This means, for example, 
that 17 semantic descriptors contributed substantially to the first principal components (pleasantness).  
 
 
Approximating odorant response with curved spaces. Each odorant vector ir


 was approximated with the 

‘projected’ vector ip . Here index i  enumerates the odorants while each vector contains 146 components 
corresponding to semantic descriptors. The projected vectors were sought in the form   
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1 1 1

D D D

i i i ip A B x C x x    
    

   
  .        (1.2) 

Here A


, B


, and C


 are odorant-independent parameters of the surface. Parameters C


 allowed the 

surface to be curved. Parameters ix  define positions of odorants on the surface. D  is the number of 
parameters per odorant which is the dimensionality of the surface. The manifold defined by this equation is D -
dimensional. In Figure 2 we used 2D  , while in Figure 4 the dimensionality was varied. To find A


, B


, C


, 

and ix  we minimized 
2

i i
i

r p  
 using the conjugate gradient algorithm (CGA). The set of parameters ix  

was determined therefore as the nearest points on the curved manifold. The nearest points define ‘projections’ 
onto the curved manifold. The remaining variance for approximation is estimated as 

2
i i

i
r p  

. 

 
To remove possible ambiguity in the data, the initial set of nearest points on the surface was determined from 
the PCA projection. The initial nearest points for the elevation coordinate were chosen to match PC1 of given 
odorant. The initial azimuth coordinate was chosen to be a linear combination of PC2 and PC3 with coefficients 
0.96 and 0.29 respectively. When looking from this rotated direction, the projection of the surface did not have 
folds and the parameterization (1.2) was expected to yield accurate results. In the n-D surface case the initial 
coordinates were chosen to be the remaining PCs. Before running CGA to optimize the surface, the nearest 
points on the surface were found for each odorant individually using CGA. The optimal surface was then found 
using 20 iteration of CGA with both parameters of the surface and the positions of nearest points subject to 
optimization. We verified that 50 iterations of CGA did not improve the result by more than 1% of variance. 
Finally, the nearest points for each odorant individually were fine tuned by running CGA on the positions of 
these points. The positions of projected onto the curved surface odorant responses ip  were the results of this 
step. 
 
Jackknife procedure. Approximating human sensory responses with higher dimensional curved manifolds is 
confounded by a dramatic increase in the number of parameters of fit. Because the number of parameters 
increases as a second power of the number of dimensions in our quadratic regression, for a moderately low-
dimensional manifold we find that we can perfectly fit all of the experimental data (Figure 4A, dashed line). To 
avoid this overfitting problem we employed the jackknife technique, in which we remove a single odorant from 
the perceptual database, obtain a high-dimensional fit with the curved surface (1.2) for the responses to the 
remaining compounds, and calculate the distance between the fitted manifold and the removed odorant. By 
applying this procedure for all odorants in the database sequentially we evaluated a variance of the 
approximation with curved manifolds. The remaining variance does not vanish for spaces of high 
dimensionality due to overfitting (Figure 4A, solid line).  
 
The natural system of coordinates of the 2D surface was used to equilibrate the density of odorants (grid in 
Figure 3). The odorants were projected onto the 2D plane and the Delaunay triangulation was calculated. The 
edges of triangulation were replaced with elastic strings of unit equilibrium length and a coordinate 
transformation was found that minimizes the elastic energy of the strings. The coordinate transformation was 
constrained to the form used above [equation (1.2)] with the mapping of 2D to 2D space. The results are 
shown in the Supplementary Figure 2. These natural coordinates (Supplementary Figure 2B) were used to 
evaluate the correlations between perceptual dimensions and the physico-chemical parameters.  
 
Estimating the variability due to a finite number of observers. The perceptual variable used here (percent 
used, PU) is convenient for estimating the experimental variability. We resampled the data for every entry in 
the database independently using 149 observers as specified in (Dravnieks, 1985). We estimated the variance 
of the resulting ensemble to be equal to 7% of the experimental variance present in (Dravnieks, 1985).  
 
Structural and Physico-chemical parameters (SPCP). The values of 72 physico-chemical properties were 
calculated using the program Molecular Modeling ProTM (ChemSW, Failfield, CA) as described in the section 
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titled "The list of physico-chemical parameters used" above. We verified that the use of 1999 parameters 
generated by E-Dragon (VCCLAB.org) did not improve the result suggesting a redundancy in the data. To 
evaluate the properties of the odorants we used their 3D structure provided by the chemical database 
maintained by the National Cancer Institute (CADD group) located at http://cactus.nci.nih.gov (release 3, 
September 2003). The structures were identified through the CAS numbers provided by the AOCP database. 
For small number of compounds the 3D structure was not found in the database. For such compounds the mol 
files were downloaded from several sources on the internet, the consensus of structural formulas was found, 
and the 3D geometry was optimized by the MM2 algorithm provided by Molecular Modeling Pro. All 3D 
structures were examined visually and in case of clear deficiencies MM2 algorithm was applied. The 
discrepancy between MM2 algorithm and the 3D structure provided by NCI database was found to be small.  
 
The set of 72 physico-chemical properties was then calculated in the batch format, using Molecular Modeling 
Pro with the algorithms described in the section titled "The list of physico-chemical parameters used" above. 
Calculation of CIM indexes that are important for the vertical perceptual dimension was checked independently 
using the known procedure (Burden, 1997).  
 
To normalize the properties we used the following procedure. For the properties that took negative or zero 
values we used the z-score [   / ( )z x x x  ], as was done by (Khan et al., 2007). The properties that took 
positive values for all odorants often had log-normal distributions, i.e. the logarithm of these quantities had a 
Gaussian distribution. The use of z-score in this case was not appropriate. We therefore evaluated the 
standard deviation of the logarithm of positive properties. If this (unitless) standard deviation was found to be 
larger than one, indicating closeness to lognormal distribution, we used the z-score of the logarithm of such 
quantity for fitting. For quantities with smaller than unit standard deviation of the logarithm we used the direct z-
score, as for the properties with some negative values.  
 
The greedy algorithm. To approximate the perceptual variables (elevation and azimuth) we used the set of 
126 structural/physical/chemical parameters (SPCPs) that are described above in the section titled "The list of 
physico-chemical parameters used". We used the algorithm that essentially reproduced the method described 
in (Saito et al., 2009) and was pioneered by Sobel's group (Haddad et al., 2008). We will describe the 
algorithm briefly for the elevation coordinate (called here "y"). The usage for the azimuth coordinate is identical.  
 
On the first step of the algorithm, we found the SPCP that yields the largest Pearson correlation coefficient with 
the given perceptual coordinate "y". The results are shown by the lowest black curve of Supplementary Figure 
3A. The best correlated SPCP turned out to be the Burden CIM index 8 as indicated in the figure by the red dot 
(see also Table 1). We then calculated the Pearson correlation coefficient for the approximation of the 
elevation coordinate with two SPCPs: The best property found in the first iteration (Burden CIM 8) and each of 
the remaining 125 properties. The approximation was found using multiple linear regression that employed 
pseudoinverse. The results are shown by the second lowest black curve in Supplementary Figure 3A. The best 
SPCP obtained on the second iteration was the number of C-S pairs (Carbon and Sulfur connected by a single 
bond) as indicated in Table 1 and Supplementary Figure 3A by the second red dot. The set of two best SPCPs 
from the first two iterations (CIM8 and C-S pairs) was used along with 124 additional SPCP in the third 
iteration. The results of the Person correlation coefficient obtained during the third iteration are shown in 
Supplementary Figure 3A, top black curve. The best correlation can only increase during these iterations. For 
this reason the procedure is called "greedy".  
 
The best five SPCPs for coordinate "y" are shown in Table 1, left. These names mean that, for example, a 
multiple linear regression of "y" with five parameters listed yields a correlation coefficient of r=0.68. Similarly, 
the use of four parameters (CIM8 through molecular width) yields the correlation coefficient of r=0.66 after 
multiple linear regression.  
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