
Supplementary Material - Model details
These supplementary materials provide detailed information regarding the mathematical and computational 
implementation of the model used for all simulations in the paper, "An informal logical of feedback-based 
temporal control". The conceptual motivation for various aspects of the model is discussed as well. The 
model described below (with corresponding MATLAB code available at https://github.com/tilsen/TiR-model), was 
designed to be as simple as possible while still having the ability to generate a variety of empirical phenomena. 
I expect that there are ways I am unaware of in which the model could be simplified, as well as important 
phenomena which the model cannot generate without revision.

Model analogies
The development of model was guided by physical analogies. The purpose of describing these analogies is not 
to justify them, nor to argue that they are better than other analogies. Rather, describing the analogies may 
be useful to readers who wish to gain further insight into the mathematical details of the model. This should 
facilitate revision, extension, and criticism of the model. I do not claim that these analogies are empirically well 
motivated or consistent with each other, but I do assume that they have some degree of internal consistency 
and utility. 

It is important to recognize that in mathematical models of cognitive systems, the systems that we model are 
always hypothetical constructs. We cannot observe these systems in any direct way (in the sense that we 
can "directly observe" a ball rolling down a hill, changes in the transmembrane potential of a neuron, or the 
aperture between the lips). Since we cannot observe our hypothetical constructs directly, we must develop a 
conceptual model of them based on analogies. More specifically, analogies are sets of conceptual metaphors 
(Lakoff, 1993), and conceptual metaphors are mappings from a relatively abstract domain (such as cognition) to 
a relatively concrete domain (such as physical phenomena). Thus our all of models of cognition are based on 
sets of conceptual metaphors.

The mechanical body analogy
One important example of a physical analogy occurs in the Task Dynamic (TD) model of speech production 
of Saltzman & Munhall (1989), which is an outgrowth of earlier models of motor behavior in other domains 
(e.g. Turvey 1977 and Kelso & Holt 1980). The analogy relates specifically to the interactions between gestural 
systems and vocal tract (VT) systems. Here are the key metaphoric mappings of the analogy, where entities/
relations in the abstract domain are italicized and entities in the physical domain are bolded:

ABSTRACT DOMAIN (cognition)                                  CONCRETE DOMAIN (physical phenomena)

• vocal tract systems (a.k.a tract variables)       ARE     mechanical bodies (objects)
• vocal tract system states                                 ARE     positions and velocities
• gesture-to-vocal tract system interactions       ARE     mechanical forces

It is worth pointing out that vocal tract systems are not literally mechanical bodies. Rather, they are 
hypothesized cognitive systems that control geometric dimensions of the vocal tract, such as lip aperture (LA), 
which is also not a mechanical body. There is no sensible way in which VT systems can be construed as 
actually being mechanical bodies, and so the mappings above are undoubtedly metaphors.
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The state of a VT system is a position/velocity vector . The TD model equation for a VT system can also 
describe a mechanical body, namely a damped, driven harmonic oscillator. The equation can be written as:

On the left hand side of the equation is an acceleration, with implicit mass . On the right hand side 

are three "forces". The term  is a damping force (analogous to friction) that counteracts rapid accelerations/

decelerations. The term  is a restoring force, which restores the system to an equilibrium position of 0. The 

term  is a driving force. Thus the equation can be seen to be an instance of the Newtonian law: , or 
to match the form of the equation above:

Note that stipulating an "implicit" mass of is an heuristic strategy that is adopted because we do not know 
how to differentiate our systems with respect to this parameter. If we wish to maintain the physical analogy to 
a damped driven harmonic oscillator, it does not make sense to say that our systems are "massless"--rather, 
our systems have an invariant mass and we do not differentiate their masses. Indeed, the mass parameter is 
always implicitly there, as it scales the values all of the other parameters of the equation.

The subscripts G on the parameters of the damping, restoring, and driving forces are included to represent the 
fact that all three parameters (and hence all three forces) are functions of time-varying gestural activation:

•

•

•

Indeed, much of the complexity in the Saltzman & Munhall (1989) model arises from developing rules to 
determine how these parameters vary as a function of the activation states of gestural systems.

Although the analogy between VT systems and mechanical systems is clear, it does not apply to gestural 
systems. Gestural systems in the Saltzman & Munhall (1989) model are implemented as hand-specified 
step functions in a unit-normalized activation coordinate. Thus the state space of gestural systems is a one-
dimensional variable in the range , which is referred to as "activation". This notion of activation does not gel 

with the mechanical system analogy. With regard to the construction of the three gesture-dependent forces--  

(damping),  (restoring), and   (driving)--the activation states of gestures play complicated roles in 
determining the "strengths" of the forces. Gestural activation states are not equivalent to or even necessarily 
proportional to the strengths of any of one these forces. This is due to the fact that, when multiple gestures are 
active, their contributions to each force are blended in a way that makes the "force strength" interpretation hard 
to maintain. Furthermore, we cannot interpret gestural systems as mechanical ones (like VT systems), because 

the states of gestural systems are not velocity and position ( ) vectors. This raises the question: is there a 
useful physical analogue for the activation states of gestural systems?

The thermodynamic system analogy
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I think that a useful analogy exists, and that it applies both to gestural systems and to most of the TiR systems 
that I have described in the manuscript: 

ABSTRACT DOMAIN (cognition)                                   CONCRETE DOMAIN (physical phenomena)

• gesture and TiR systems                                  ARE    thermodynamic systems
• gesture and TiR system states (activations)    ARE    thermodynamic energies
• gesture-TiR interactions                                   ARE    energy transfers

Why are thermodynamic systems useful analogies for gestures and TiRs? My reasoning is based on the 
admittedly speculative idea that each of these systems is physically instantiated by a relatively large population 
of neurons which may be located in one or more areas of the central nervous system. The exact locations of 
these populations and their degrees of overlap (independence) are potentially important but not directly relevant 
to the gist of the analogy. 

Given the idea that each system corresponds to a large population of neurons, it is relevant to first consider how 
we might conceptualize even a single neuron within a population. I note that my understanding of the physiology 
and dynamics of neurons is heavily influenced by the work of Izhikevich (2007). Also, there is a vast amount of 
detail which is omitted from the following. 

We can think of an individual neuron as a system which is separated from its surroundings, with the separation 
being accomplished by a cell membrane. The membrane has various types of ion gates/pumps, and these 
serve to maintain electrical and chemical gradients. Both of these types of gradients are associated with forces 
that influence the flux of ions through the membrane. The "resting state" of the neuron corresponds to a balance 
between these forces. Some types of neurons have the property that the resting state is close to a critical state 
(threshold) at which the neuron undergoes a phase transition, i.e. a rapid depolarization (spike). This can be 
viewed as an instance of self-organized criticality in the sense of Bak (1988): the neurons are systems that, 
when embedded in the appropriate surroundings, evolve toward a critical state. In other words, the equilibria of 
some types of neurons are states in which they are "ready" to depolarize. 

One cause of the phase transition (rapid depolarization) can be changes in the transmembrane gradients 
that are caused by depolarization of other neurons, via synaptic mechanisms. When a pre-synaptic neuron 
depolarizes, it releases neurotransmitter molecules at its synaptic junctions, and this causes changes in the 
ion gates of the membrane of a post-synaptic neuron. Hence it is reasonable to say--metonymically--that one 
neuron "exerts a force" on another, since the pre-synaptic neuron transitions to state in which it causes a 
change in the gradients associated with the post-synaptic neuron. A more neutral statement might be that a 
change in the state of a pre-synaptic neuron is associated with a change in the forces that a post-synaptic one 
experiences from its surroundings.

Furthermore, an important property of some neurons (including the "regular-spiking" cortical layer 5 pyramidal 
neurons described by Izhikevich (2007: 372)), is that in the resting state they respond monotonically to weak 
input (forces which are not sufficiently strong to cause a depolarization in and of themselves). This means that 
the more input these neurons receive, the closer they get to the threshold for spiking. A highly idealized "leaky 
integrate-and-fire" dynamics is described in Izhikevich (2007: 358), which has some of the important properties 
of neuronal spiking. This very simple model is:
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where v represents the membrane voltage, and b is the input current, which can vary over time. The term  is 
the leak current. A spike occurs when . 

This is not an adequate model of any neuron, since it does not capture the dynamics of the spike or 
repolarization, but it does exhibit the important properties of (i) having a voltage state, (ii) having a threshold, 
and (iii) generating some event when the threshold is reached. It is not difficult to extend this very simple model 
to capture the dynamics of the spike, but for current purposes the idealized model will suffice.

Macroscopic construction of state variables
Now let's imagine that the large population of neurons that we assume to be associated with a gestural system 
is a collection of these leaky-integrate-and-fire neurons. The neurons within the population "receive excitatory 
input from" (experience depolarizing forces caused by) neurons associated with other populations--these are 
"external" forces because they are from neurons outside of the population. The neurons within the population 
also experience "internal" forces from each other. Given this situation, how should we conceptualize and 
model the state of the population? A very simple approach is to imagine that we can count the number of 
depolarization events that occur over a short period of time, summing over the entire population--a spike rate. 
Because we are dealing with a very large population, we can think of the spike rate as an approximately 
continuous scalar variable. This variable is bounded below at 0 (no spiking), and is bounded above in a way 
that depends on population size and neurophysiological constraints on how frequently a neuron can generate a 
spike. 

Hence the system state--which we call "activation"--is a spike rate, a short-term integration of spikes, and it has 

units of .

But what do "spikes" correspond to, in a physical units? In the integrate-and-fire model, they are events that 
begin when voltage reaches a threshold value of 1, and they end with the return of that voltage to a resting 
value of 0. This means that spikes are stereotyped changes in voltage over a short time period, with units of 

. Hence our system state variable of spike rate (activation) can be conceptualized as a time-integral of 

changes of voltage (V) over time, i.e. 

activation (system state) = 

Furthermore, consider that voltage is the ratio of work to charge:  , and has dimensions:

    

where:

• M is mass
• L is length or distance
• T is time
• Q is charge
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Therefore, activation also has the dimensions of a voltage, i.e. an amount of work per charge:

   has units of:  

Now we are faced with a similar situation as occurred in the mechanical analogy for vocal tract systems: we 
do not know how to distinguish our gestural systems with respect to charge, just as we did not know how to 
distinguish are vocal tract systems with respect to mass. So, we will adopt a heuristic stipulation that , just 
as we posited that  for the damped driven harmonic oscillators. Thereby, through nondimensionalization of 
charge, our activation state for gestural systems and TiRs can be expressed in dimensions of energy:

In other words, in the thermodynamic analogy, gestural system and TiR system states are energies. Moreover, 
given that these energies represent the collective behaviors (spikes) of many individual component systems 
(neurons), it is appropriate to adopt a thermodynamic/statistical interpretation of our system. A change in the 
internal energy of a thermodynamic system is typically conceptualized as the sum of products of conjugate pairs 
of generalized forces and generalized fluxes (or displacements), i.e.

    (+ more force/flux conjugates)

Each conjugate pair represents a different way in which energy can be transferred to or from the system. 
Specifically, the term  is mechanical work, with pressure P considered a generalized force and change in 
volume  a generalized displacement. The term  is heat energy, with temperature being the generalized 
force and change in entropy the generalized displacement. The term  is material energy transfer (i.e. 
energy transferred through exchange of matter), with the chemical potential  of particles/molecules being 
the force and the number N of particles/molecules being the flux. There are additional conjugates we might 
add to the above equation, including stress-strain work, electrical work, surface work, gravitation work, electric 
polarization, and magnetic polarization.

It is an open question whether some of these various types of physical energy transfer are more useful than 
others for conceptualizing the interactions between neural populations. For the purposes of constructing a 
simple model, there is no need to commit to one particular interpretation of the energy transfer (and yet, doing 
so may be useful for developing more powerful models). Nonetheless, there is a crucial point to make about 
how we should conceptualize the energy transfer in the case of interacting neural populations. This point is 
important enough to be considered a "principle" of the analogy:

The principle of indirect energy transfer between neural populations:

• An action of system A on system B causes energy to be transferred between B and its surroundings , .

The indirect transfer principle tells us that energy is not transferred directly between systems. Such would 
be inconsistent with our microscopic understanding of neuronal signaling, which does not involve the direct 
transfer of ions from one neuron to another. Instead, when two populations of neurons interact, we think of the 
interaction as indirect energy transfers: the interactions cause energy to be transferred between the neurons 
in a population and their surroundings. Because we do not model the surroundings, we cannot readily apply 
the first law of thermodynamics (energy conservation) to reason about our systems and their interactions. The 
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systems are partly "open" to their surroundings. Furthermore, the "forces" that we incorporate in our model of 
system interactions are metonymic: the forces that B experiences come directly from its surroundings, , while 

system A is what causes the surroundings  to exert force on B.

Macroscopic extension of integrate-and-fire dynamics
Now that we have a conceptual model of our system state variable (x is an energy), we need to construct a 
dynamics for that variable:

Our construct is based on applying the very simple idealization of the leaky integrate-and-fire model of a 
single neuron, described above. In a sense, we are asserting that the dynamical behavior observed for each 
of the many microscopic components of our system (which we do not model) emerges macroscopically in the 
collective behavior of those components. On the macroscale, this behavior describes changes in the "activation" 
(energy) of the population. Recall that the microscale equation was:

For the macroscale, we will adopt an even simpler idealization in which we ignore the leak term ( ). (To justify 
this, we might speculate that chains of interactions between neurons within a population partly counteract the 
leak currents of individual neurons.) At the same time, we will parameterize the threshold to , and rather than 
resetting the system to 0 when it reaches the threshold, we will construct a event , which can be read as "act 
on other systems" and which entails that the system can exert a force on other systems. Renaming v to x, and 
renaming b to , we have:

 

The time-dependent function  is the total force experienced by a system per unit of time, and it represents 
the sum of the generalized forces associated with various energy transfers to the system. These component 
forces are usually associated with the actions  of other systems in the model. Expressing the equation in a 
way that shows how we obtain a numerical solution clarifies that the energy  transferred in each time step of 
the model simulation is a product of the force per unit time  and the time step :

Note that we have adopted the heuristic of treating the conjugate generalized displacements of the forces as 
having values of 1. Hence we can say that the system state variable (x, an activation) is an "integration of 
force" that the system experiences over time. It is more precisely correct to say that the system integrates the 
energy transferred over time. One reason that we refer to integration of force rather than energy is that it is 
only the force that varies, while the flux/displacement is nondimensionalized. In the general equation for system 
dynamics presented below, changes in system states are a sum of the energy transfers, each of which can be 
conceptualized as products of forces with implicit fluxes/displacements.
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Model equations
Different types of systems in the model experience different sets of forces. Indeed, system types can be 
distinguished according to the sources of force that they experience. Nonetheless, it is useful for simplifying 
the computational implementation of the model to construct a general equation for all system dynamics. In this 
equation, the change in the state of any system is equated to a sum of forces. However, in most cases only one 
or two of these forces is ever experienced by a given system, with the remaining ones being zero. The general 
equation of the model is:

Eq. (1):     

where X is a vector of system state variables, and F are various forces, listed below:

:    gated autonomous growth

• :  non-autonomous growth rates / frequencies

:      oscillator amplitude dynamics

• k: stiffnesses of oscillators

:     oscillator phase dynamics

• : phase coupling force magnitudes and signs

:      non-autonomous TiR integration / gestural gating forces 

• : integration rates

:      non-autonomous suppression / degating forces

• : suppression force strengths

:   action forces

• : action valence (gating/degating)
•  action threshold (specified in units of x)

For any particular system, most of the forces included in Eq. (1) are always zero, and so Eq. (1) can be reduced 
in various system-specific ways, described below.

Types of systems
The following is a list of different types of systems which can be included in the model. System types as named 
in the model Matlab code are shown in parentheses, along with symbols commonly used in schemas. Also 
shown are state space limits or modulus values when applicable:
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Gestural systems, gestural gating systems, and sensory systems:

• Gestural systems (gest, ): 
• Gestural gating systems (gate, ): 
• Sensory systems (sens, ): 

Non-autonomous TiRs:

•
Intra-gestural TiRs (itmr,  or  or ): 

• Inter-gestural TiRs (etmr,  or  or ): 
• Extra-gestural TiRs (stmr,  or  or ): 

Autonomous TiRs:

• Periodic TiR phases (osc, ): modulus 
• Periodic TiR radial amplitude (oscr1): 
• Periodic TiR radial amplitude first derivative  (oscr2): 
• Periodic TiR gating systems (oscg): 
• Aperiodic TiR systems (extr, ): 
• Aperiodic TiR gating systems (exg): 

Competitive queuing systems:

• Competitive queuing systems (cq, ): 
• Competitive queuing gating systems (cqg): 

Gestural systems

M = fbmod_models('external vs internal');
M = run(M);
draw_schema(M);
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For gestural systems, Eq. (1) can be reduced to:

 

Eq. (2):     

where t is an integer time index. The first sum corresponds to , the gestural degating force, and the second 

sum corresponds to , the gestural gating force.  is the gate-opening force which the gesture i experiences 

from gestural gating system j, and  is the gate-closing force. The values of  and  which correspond 

to forces exerted by gates are set to  in order to impose the condition that gestural systems evolve to 

maximum/minimum activation in one timestep. For all simulations reported in the manuscript, each gesture only 
experiences forces from its unique associated gating system. 

param_matrix(M,'alpha');
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param_matrix(M,'sigma');

The min and max functions are applied to gestural systems at each time step to constrain their activation values 
to the interval :

Gestural gating systems
For gestural gating systems, Eq. (1) reduces to:
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Eq. (3):     

where  is the action of system j on gestural gate i. This action is defined as:

Eq. (4):    

where the inequality inside  evaluates to 1 when true and 0 when false. The parameter  is in effect a 
tolerance for how close to the threshold a system state must be in order to act on another system. For all 

aperiodic systems this value was set to  and for all periodic systems this value is set to , 

where  are the oscillator frequencies. These settings ensure that systems exert actions when they reach the 
threshold.

The matrix  specifies the TiR state values (thresholds) at which TiRs act upon other systems, including gestural 
gating systems: 

param_matrix(M,'tau');

The matrix  specifies the valence of TiR actions on other systems: 

param_matrix(M,'chi');
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In this example, the thresholds and valences of the actions on gate_1 and gate_2 have the following effects: 

• extr_1 opens gate_1 when extr_1 = 0.040
• etmr_1 closes gate_1 when etmr_1 = 0.250
• etmr_1 opens gate_2 when etmr_1 = 0.250
• stmr_2 closes gate_2 when stmr_2 = 0.200

Sensory systems
Sensory system states are modeled as veridical, delayed gestural system states. This is implemented by setting 
the state of each sensory system to the state of the corresponding gestural system at a fixed time in the past:

Eq. (5):     

where  is the gestural system which corresponds to sensory system , and  is the delay between 
gestural states and cortical sensory system representations of those states, here assumed to be 0.040 s.

Non-autonomous timekeepers
The matrix  also specifies the forces that gestural systems and sensory systems exert on various non-
autonomous TiRs. For non-autonomous TiRs, the system equation is:

 

Eq. (6):     

which is identical to the gestural system equation (Eq. (2)). However, examining the matrix  shows that 
intra-gestural (itmr), inter-gestural (etmr), and extra-gestural (stmr) TiRs differ from gestural systems in that they 
integrate forces experienced from gestures or sensory systems. Specifically, intra-gestural and inter-gestural 
TiRs (itmr, etmr) integrate forces from gestures, and external TiRs (stmr) integrate forces from sensory systems.
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Aperiodic autonomous timekeepers and gating systems
Autonomous TiRs (extr), unlike non-autonomous TiRs, have gating systems that can control when their 
activation states begin to increase and can halt the increase of their activation. 

M = fbmod_models('auto vs nonauto');
M = run(M);
draw_schema(M);

param_matrix(M,'omega');

param_matrix(M,'map_exg_extr')
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Aperiodic autonomous TiRs are described by the following equation:

 

Eq. (7):     

where  is the intrinsic growth rate, and  is the (binary) state of the associated gating system.

Periodic autonomous timekeepers (coupled oscillators)
For the phase variables of coupled oscillators, Eq. (1) reduces to :

 

Eq. (8):     

where  is the intrinsic oscillator frequency in units of radians/s, and  is the (binary) state of the associated 
gating system. The sum is a sum over relative phase coupling forces.

For the amplitude ( ) and amplitude derivative ( ) variables of coupled oscillators, Eq. (1) reduces to:

 

 

Eq. (9):    r:      

:      
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where  is the radial amplitude derivative corresponding to radial amplitude  and conversely  is the radial 

amplitude corresponding to radial amplitude derivative . The term  corresponds to critical damping. The 

equilibrium amplitude  and stiffness  for all oscillators.

M = fbmod_models('oscillators_ggg');
M = run(M);
draw_schema(M);

M.freq = M.omega/(2*pi); %convert to Hz

param_matrix(M,'freq');

param_matrix(M,'tau');
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The actions that oscillator systems exert on gestural gates depend both on oscillator phase, as specified in 
threshold matrix , and on oscillator amplitude. The condition is imposed that oscillators only act on gestural 
system when their amplitudes exceed a threshold value of . This condition is implemented in the Matlab 
code by setting the input of an oscillator to the action force function to a non-numeric value when its radial 
amplitude is below .

Competitive queuing systems and gates
Competitive queuing systems (cq), along with their gates (cqg) are a special class of TiRs which can be 
grouped into competitively selected sets of systems. The cq systems which comprise a group are selected in a 
mutually exclusive way--only one system can be selected at a time. The implementation of mutual exclusion is 
accomplished with a matrix which maps from a cq system to the gating systems of all of the cq systems with 
which it interacts:

X = load(['fbmod_multilevel_competitive_selection.mat']);
M = X.M; %model
U = X.U; %mu systems in the utterance
P = X.P; %conceptual (prosodic word) systems

param_matrix(M,'map_cq_cqg')
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Competitive queuing gate states are controlled with the following discrete logic. In each timestep, for each 
cq/cqg system, the following logical conditions are calculated:

• condition : any cq system in the associated set is selected (has a value )
• condition : all cq systems in the associated set have previously been selected. 
• condition : the higher level cq system (if present) which governs this cq system is not selected

The states of all cqg systems (gates) are then operated on, such that the gate is closed if any of the three 
conditions holds, otherwise it is opened:

The relations between higher level cq systems (C-systems) and lower level ones ( -systems) are specified in 
map from higher-level cq systems to lower level ones:
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param_matrix(M,'map_cq1_cqg0')

An outstanding challenge in further development of the model is to convert the discrete/logical handling of 
competitive selection dynamics to a fully continuous/dynamical one.

Simulation details
All simulations reported in the manuscript were conducted with a timestep of s, i.e., 1 ms. Simulation 
durations were adjusted to allow sufficient time for all gestures to be activated and deactivated. TiR action-
threshold parameters were set to generate empirically reasonable gestural activation dynamics. Oscillator 
frequencies were  Hz unless otherwise specified. 

Effects of global and local noise for three-gesture systems
For the analysis of covariance between initiation intervals in three-gesture systems, 400 simulations were 
conducted for each of 25 combinations of local and global noise levels. The noise was implemented as follows. 

For oscillator frequency ( ) noise, in each simulation random numbers were drawn from uniform distributions in 
the range and were added to the base frequency 5 Hz. Values of  were varied in five steps from 0 (min 
noise amplitude) to  Hz (max noise amplitude). Hence the actual frequencies of each oscillator were:

For non-autonomous TiR integration rate ( ) noise, in each simulation random numbers were drawn from 

Gaussian distributions ( , ) and were added to the base  of 1.0. Values of  were varied in five 
steps from 0 (min noise amplitude) to 0.2 (max noise amplitude). Hence the actual integration rates of the 
non-autonomous TiRs were:
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It should be noted that when global and local oscillator noise levels are high, oscillator frequencies can become 
substantially different from each other, leading to chaotic phase evolution and disordered gestural triggering. 
These cases were excluded from analyses of noise effects on covariance.

Effects of self-attention variation

For the simulation of variation in self-attention, represented by , the self-attention parameter  was varied in 
 steps over the range , and  parameters for non-autonomous TiRs were modulated as follows:

 

with  for external/sensory TiRs,  for internal TiRs, and .

Effects of pace variation

For the simulation of variation in pace, represented by , the pace parameter  was varied in  steps over the 
range , and  parameters for coupled oscillators were modulated as follows:

where  Hz,  Hz, tanh is the hyperbolic tangent function, and  controls the nonlinearity in 

the mapping between  and .

Effects of selectional anticipation
The effect of selectional anticipation associated with selection of the final set of systems out of set of 
competitively selected systems was simulated by imposing:

,  for non-final sets 

,  for the final set

The effects of self-attention, pace variation, and selectional anticipation described above were applied in the 
simulations of speech rate variation for  steps of  over the range .
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function [M] = run(M)
M = fbmod_run_models(M,'verbose',false,'parallel',false);
M = fbmod_prep_schema(M);
end

%%
function [] = draw_schema(M,varargin)
h = fbmod_helpers;
figure;
if nargin==1
    fbmod_draw_schema(M,h,...
        'linewidth',1,'reduce_lines',[0.005 0.005]);
elseif strcmp(varargin{1},'large')
    fbmod_draw_schema(M,h,...
        'linewidth',1,'reduce_lines',[0.005 0.005]);
end

end

%% plots parameter matrix:
function [] = param_matrix(M,param)
plot_transform = {};
titlestr = param;
fontsize = 11;
switch(param)
    case 'alpha'
        plot_transform = @(x)x~=0;
        titlestr = '\alpha';
    case 'tau'
        titlestr = '\tau (action thresholds)';
    case 'chi'
        titlestr = '\chi (action valences)';   
    case 'sigma'
        titlestr = '\sigma (supression)';        
    case 'omega'
        titlestr = {'\Omega (growth rate/frequency)'};  
    case 'map_exg_extr'
        titlestr = {'map from autoTiR','gating systems to autoTiRs'};   
    case 'map_cq_cqg'
        titlestr = {'map from cq','to cqg systems'};       
    case 'map_cq1_cqg0'
        titlestr = {'map from higher level cq','to lower level cqg'};             
end
fbmod_plot_system_matrix(M,param,...
    'fontsize',fontsize,...
    'fontsize_values',9,...
    'show_values',true,...
    'plot_transform',plot_transform);
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title(titlestr,'fontsize',fontsize);
axis equal;
axis tight;

fh = gcf;
axh = gca;

resize_figure(fh,axh);

end

%% resizes parameter matrix figure for nicer export
function [] = resize_figure(fh,axh)

%add some extra space at top and bottom by compressing axes
axh.Position([1 3]) = axh.Position([1 3]) + [0.05 -0.05];
axh.Position(4) = axh.Position(4) - 0.05;

nc = diff(get(axh,'XLim'));
nr = diff(get(axh,'YLim'));

%put matrix near bottom of figure
axh.Position(2) = 0.02;

%resize according to rows and columns 
fh.Position(3) = min(40*(nc+6),600);
fh.Position(4) = min(40*(nr+4),600);

end
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