Supporting Information

Table S1 The cor	mparison of the	electrochemical	performance of	NiAl and NiCoAl

LDHs syntl	hesized by	different	methods
------------	------------	-----------	---------

Working electrode	Method	Specific Capacity (SC)	SC retention after 1000 cycles	Ref
NA-2	Dropping double hydrolysis method	583 C g ⁻¹ at 1 A g ⁻¹ 530 C g ⁻¹ at 2 A g ⁻¹	83.3%	This Work
NiAl-LDH	Hydrothermal method	471.2 C g ⁻¹ at 1 A g ⁻¹	88%	[1]
NiAl-LDH@GOs ^a	Hydrothermal method	556 C g ⁻¹ at 1 A g ⁻¹	98%	[2]
NiAl-LDH	Hydrothermal method	390.6 C g ⁻¹ at 2 A g ⁻¹	90%	[3]
NiAl-LDH core-shell spheres	Solvothermal method	511 C g ⁻¹ at 1 A g ⁻¹	85%	[4]
Ag NW@NiAl-LDH	Hydrothermal method	574 C g ⁻¹ at 1 A g ⁻¹	95%	[5]
NCA-3	Dropping double hydrolysis method	703 C g ⁻¹ at 1 A g ⁻¹	73.5%	This Work
NiCoAl-LDH	Hydrothermal method	534 C g ⁻¹ at 1 A g ⁻¹	90%	[1]
Ni _{0.70} Co _{0.05} Al _{0.25} -LDH	Hydrothermal method	583 C g ⁻¹ at 1 A g ⁻¹	80%	[6]
NiCoAl-LDH nanosheets	Solvothermal method	614 C g ⁻¹ at 1 A g ⁻¹	95%	[7]
NiCo2Al-LDH@N-GOb	Hydrothermal method	682 C g ⁻¹ at 1 A g ⁻¹	92%	[8]
NiCoAl-LDH@NRG°	Surfactantassisted co- precipitation method	751 C g ⁻¹ at 1 A g ⁻¹	90%	[9]
CoNiAl-LDH	Hydrothermal method	624 C g ⁻¹ at 1 A g ⁻¹	92%	[10]

^aGOs = Graphene oxides

 b N-GO = N-doped reduced graphene oxide

^cNRG = N-doped reduced graphene oxide

[1] Tian, Y., Zhu, L., Han, E., Shang, M., Song, M. (2019). Effect of templating agent on Ni, Co, Al-based layered double hydroxides for high-performance asymmetric supercapacitors. *Ionics* 26, 367–381.

[2] Golmohammadi, F., Amiri, M. (2020). Biomass-derived graphene-based nanocomposite: A facile template for decoration of ultrathin nickelealuminum layered double hydroxide nanosheets as high-performance supercapacitor. *International Journal of Hydrogen Energy* 45, 15578-15588.

[3] Luo, k., Zhang, j., Chu, w., Chen, H. (2020). Facile Fabrication of Nickel Aluminum Layered Double Hydroxide/Carbon Nanotube Electrodes Toward High-Performance Supercapacitors. *ACS Omega* 5, 24693–24699.

[4] Wu, S., Hui, K., Hui, K., N., Kim, K., H. (2017). Electrostatic-Induced assembly of graphene-encapsulated carbon@Nickel–Aluminum layered double hydroxide core-shell spheres hybrid structure for high-energy and high-power-density asymmetric supercapacitor. *ACS Applied Materials & Interfaces* 9, 1395–1406.

[5] Li, L., Hui, K., Hui, K., Zhang, T., Fu, J., Cho, Y. (2018). High-performance solidstate flexible supercapacitor based on reduced graphene oxide/hierarchical core-shell Ag nanowire@NiAl layered double hydroxide film electrode. *Chemical Engineering Journal* 348, 338–349.

[6] Zheng, C., Yao, T., Xu, T., Wang, H., Huang, P., Yan, Y., et al. (2016). Growth of ultrathin NiCoAl layered double hydroxide on reduced graphene oxide and superb supercapacitive performance of the resulting composite. *Journal of Alloys and Compounds* 678, 93-101.
[7] Meng, Z., Yan, W., Zou, M., Miao, H., Ma, F., Patil, A., et al. (2021). Tailoring NiCoAl layered double hydroxide nanosheets for assembly of high-performance asymmetric supercapacitors. *Journal of Colloid and Interface Science* 583, 722–733.
[8] Wang, X., Li, X., Huang, C., Hao, C., Ge, C., Guo, Y. (2020). Fabrication of NiCoAl-layered double hydroxide/N-GO for high energy allsolid-state asymmetric supercapacitors. *Applied Surface Science* 527, 146891.

[9] Dai, Z., Liu, F., Chen, Y., Liu, Y., Bao, J., Han. M. (2019). Integrating ultrathin and modified NiCoAl-layered double hydroxide nanosheets with N-doped reduced graphene oxide for high-performance all-solid-state supercapacitors. *Nanoscale* 11, 9896-9905.

[10] Zhang, S., Liu, J., Huang, P., Wang, H., Cao, C., Song, W. (2017). Carbonaceous aerogel and CoNiAl-LDH@CA nanocomposites derived from biomass for high performance pseudo-supercapacitor. *Science Bulletin* 62, 841-845.