Supplementary Table 2: Most striking clinical studies focusing on KIR-mediated NK alloreactivity in aHSCT.

Hypotheses: aKIR: activating KIR, iKIR: inhibitory KIR, CR: complete remission

Population: AML: acute myeloid leukemia, AMLL: acute myelomonocytic leukaemia, ALL: acute lymphoid leukemia, CLL: chronic lymphoid leukemia ,CML: chronic myeloid leukemia, CMML: chronic myelomonocytic leukemia, CR: complete remission, HL: Hodgkin lymphoma, MDS: myelodysplastic syndroms, MM: multiple myeloma, MPN: myeloproliferative neoplasia, NHL: non-Hodgkin lymphoma

<u>**Graft's characteristics:**</u> ATG: anti-thymoglobulin, BM: bone marrow, CsA: ciclosporin-A, G-CSF: granulocyte colony stimuling factor, mAbs: monoclonal antibodies, MAC: myeloablative conditioning, MTX: methotrexate, MSD: matched sibling donor, MUD: matched related donor, MMUD: matched unrelated donor, NMAC: non-myeloablative conditioning, NMDP: national marrow donor program, PBSC: peripheral blood stem cell, PT-Cy: post-transplant cyclophosphamid, RIC: reduced intensity conditioning, TCD: Tedl deplete, TCR: T-cell replete

HLA and KIR assessments: PCR: polymerase chain reaction, -SBT: sequence based typing, -SSO: sequence specific oligonucleotide, -SSP: sequence specific primer, RT-PCR: reverse transcriptase PCR SNP: single nucleotid polymorphism

<u>**Clinical outcomes:**</u> #y: # years, DFS: disease free survival, EFS: event free survival, HR: hazard ratio, NRM: non-relapse mortality, OR: odds ratio, OS: overall survival, p: p-value, PFS: progression free survival, TRM: transplant related mortality

Study EFFECT Hypotheses	Population	Graft's characteristics	Study design	HLA and KIR assessments	Main results
			Ligand/ligan	id model	
2002 (3) POSITIVE EFFECT	Included pairs, n = 92 Ages not reported	Haploidentical donors <u>Platform</u> TCD	Clinical study Details not reported	HLA, donors and recipients Not reported	<u>Clinical results</u> • <u>Among the whole cohort</u> If absence of ligand-ligand incompatibility vs presence, respectively: - Rejection 15.5% vs 0% - Grade II-IV aGVHD 13.7% vs 0 %
Ligand/ligand model	AML, n=57 ALL, n=35		+ biological proof of concept measurement of NK cell alloreactivity by screening of NK clones	<u>No KIR typing</u>	 For AML recipients only: ligand-ligand incompatibility in the GVHD direction is the only independent predictor of survival. If absence of ligand-ligand incompatibility vs presence, respectively: 5y EFS 5% vs 60% 5y probability of relapse 75% vs 0% absence of ligand-ligand incompatibility in the GVHD direction is the only independent factor for poor outcome (HR = 0.33) in ALL: no effect

					Biological conclusions ⇔ proof of concept In humans, ligand-ligand model closely correlates with NK clones killing recipient's targets. In murine model, alloreactive NK cells increase engraftment, graft-versus-tumor effect and survival while decrease relapse and prevent GVHD by elimination of recipient APCs
2007 (4) NEGATIVE EFFECT	Included pairs, n=116 Ages not reported	Haploidentical donors <u>Platform</u> TCR with ATG	Retrospective Between November 2002 and October 2005	HLA, recipients and donors HLA-A, -B, -C and - DRB1 at allele-level molecular typing <u>No KIR typing</u>	Ligand-ligand mismatch: • Considering aGVHD - independent risk factor for aGVHD (HR=2.48, p=0.01) - increase of aGVHD incidence in the standard-risk group (87.5 vs 34.3%, p=0.001)
Ligand-ligand model	AML, n=34 MDS, n=5 ALL, n=40 CML, n=35 AMLL, n=2	Graft source PBSC with G-CSF mobilized BM Conditioning regimen Only MAC	Monocentric, Peking University Institute of Hematology (China)		 compared to patients without ligand-ligand mismatch Considering TRM, OS and relapse independent risk factor for OS (HR=2.23, p=0.049) and relapse (HR=4.77, p= 0.017) higher cumulative relapse rate (27.1 vs 0%, p=0.007 for AML / 53.7 vs 6.7%, p=0.003 for ALL) inferior OS rate (50 vs 81.9%, p=0.040 for AML / 35 vs 74.8%, p=0.044 for ALL)

2019 (6)	No CR, n=63 Included pairs, n=444	Haploidentical donor <u>Platform</u>	Retrospective	HLA, donors and recipients	Ligand-ligand mismatch when compared with no ligand-ligand mismatch
	MM, n=9 ALL, n=7 CLL, n=5 <u>Remission</u> CR, n=81	MAC, n=19 RIC, n=31 NMAC, n=94	Rozzano, Italy		 Igand-ligand mismatch. If recipient in CR No significant effect of ligand-ligand mismatch
Focused on effectiveness considering disease status (remission or not)	<u>Lymphoid</u> (n=93) NHL, n=38 HL, n=34	PBSC, n= 91 <u>Conditioning</u> <u>regimen</u>	Institut Paoli Calmettes, Marseille, France Humanitas Cancer Center,		when compared to patients without ligand-ligand mismatch, respectively. Same rates of aGVHD (18% vs. 17%, $p = 0.892$) and cGVHD (18% vs. 7%, $p = 0.197$) irrespective of the
POSITIVE EFFECT Ligand-ligand model	<u>Myeloid</u> (n=51) AML, n=32 MDS, n=15 MPN, n=4	Platform TCR with PT-Cy Graft sources BM, n= 53	and December 2014 <u>2 centers:</u>	typing <u>No KIR typing</u>	 Lower 2y relapse incidence: 18% vs. 42%, p=0.068 (multivariate analysis: HR= 0.21, p=0.013) Better PFS: 50% vs. 21%, p = 0.037 (multivariate analysis: HR = 0.42, p = 0.028) Trend for improved OS: 50% vs 28%, p=0.141
2018 (5)	Included pairs, n=144 Adults only	Haploidentical donor	Retrospective Between December 2009	HLA, donors and recipients DNA high-level	• <u>If absence of CR</u> Ligand-ligand mismatch correlates with

NEGATIVE EFFECT Ligand-ligand model + "Host missing ligands", irrespective of the expression in donor. = missing ligand theory \rightarrow no correlation with transplantation outcomes \rightarrow is not discussed in the paper	Adults only <u>Acute</u> <u>leukemia only</u> AML, n=327 ALL, n=117 <u>Remission</u> <u>status</u> CR1 = 39% CR2 = 26% No CR = 35%	TCR with PT-Cy <u>Graft sources</u> BM (54%) PBSC (46%) <u>Conditioning</u> regimen MAC (54%) RIC (46%)	Between 2009 and 2015 Multicentric Acute Leukemia Working Party of the EBMT, 500 centers worldwide	DNA high-resolution typing of class I and II HLA antigens <u>No KIR typing</u>	 decreases 2y OS : 46.8% vs 53.1%, p=0.11 (multivariate analysis: HR 1.4, p=0.03) strives for higher relapse: HR 1.36, p=0.09, especially in patients with AML (HR 1.48, p=0.07) Those effects on OS and relapse are stronger when using PBSC (compared to BM) for AML recipients (compared to ALL) No effect on aGVHD, cGVHD, engraftment or NRM
2005 (7) POSITIVE EFFECT Receptor-ligand model	Included pairs, n=178 Paediatric + adult <u>Myeloid</u> (n=133) AML, n=57	Matched sibling donor <u>Platform</u> <i>Ex-vivo</i> TCD (mAbs) <u>Graft source</u>	Receptor/liga Retrospective Between 1981 and 1998 Single-center study in New- York, USA	HLA, donors and recipientsClass I and II intermediate resolution (serology, PCR-SSP, or -SSO), and high resolution (- SBT) if needed to confirm HLA identityHLA, only for recipients	Missing ligand effect • In AML and MDS Compared with patients exhibiting all class I ligands for donor KIR, missing ligand effect: • increases DFS (HR=0.53, p=0.014) • increases OS (HR=0.53, p=0.03) • lower incidence of relapse (HR=0.41, p=0.04), withstanding multivariate analysis

Recipients lacks HLA ligand for at least one donor inhibitory KIR	CML, n=61 MDS, n=15 <u>Lymphoid</u> ALL, n=45	Bone-marrow derived graft <u>Conditioning</u> <u>regimen</u> Myeloablative conditioning		high-resolution for HLA-B and -C typing (alleles identification for epitope segregation) <u>KIR, only for</u> <u>donors</u>	 If lacking 2 HLA ligands for donor-inhibitory KIR, even more higher DFS (p=0.002) and OS (p=0.003). In CML and ALL: No effect on DFS, OS or relapse
				Gene detection of <i>KIR2DL1, KIR2DL2, KIR2DL3,</i> and <i>KIR3DL1</i> using PCR SSP	Same risk for GVHD regardless the missing-ligand effect in any disease group
			Educationa	l model	
2014 (8)	Included pairs, n=283	Unrelated donors: 10/10, n=193	Retrospective	HLA, donors and recipients Provided by each	Comparing to recipients possessing HLA ligand cognate with the donor's NK cell licensing system, recipients lacking at least one HLA ligand have
NEGATIVE EFFECT Educational models based on iKIR	Paediatric + adult AML, n=133 ALL, n=69 AL not specified, n=6	9/10, n=72 8/10, n=17 7/10, n=1 <u>Platform</u> TCD, n=48	Between 2002 and 2010 Multicentric study in Poland	KIR, only for donorsGene detection of all KIR genes using PCR-SSP	 decreased 4y OS (death events 83.3% vs. 39.8%, p=0.001, HR=2.97, p=0.001) decreased 4y PFS (91.6% vs. 47.7%, p=0.0001, HR=3.45, p=0.0001) decreased time to progression (30.0% vs. 17.3%, p=0.013; HR=4.46, p=0.013)

	CL not specified, n=59 Lymphoma, n=9 MM, n=7	TCR, n=235 <u>Graft sources</u> BM, n=71 PBSC, n=201 <u>Conditioning</u> <u>regimen</u> MAC, n=174 RIC, n=96	Donor's haplotyp	e based model	Those effects are not associated with aGVHD and independent from HLA-mismatch Incidence of aGvHD comparable regardless of educational status groups (66.7% vs. 53.0%, OR=0.94, p=0.36)
2010 (9)	Included pairs, n=1409	Unrelated donors: 10/10, n=687	Retrospective	HLA, donors and recipients High-resolution	In AML, significant protective effect on relapse - of donor <i>B/x</i> vs A/A genotype (RR=0.72, p=0.003)
POSITIVE EFFECT	Paediatric + adult	9/10, n=361 8/10, n=213	Transplants facilitated by NMDP between 1988 and 2006	HLA-A, -B, -C, - DRB1, and -DQB1	 - of donor Cen-B/B vs Cen-A/A (RR=0.34, p<.001) - of donor with KIR B–content≥ 2 compared to < 2
KIR-B content score	AML, n=1086	Less than 8/10, n=148	Multicentric	<u>KIR, only for</u> <u>donors</u>	 if HLA matched (RR=0.52, p<0.001) and if HLA mismatched (RR=0.52, p<0.001)
	ALL, n=323	<u>Platform</u>	study in USA	Gene detection of all genes using SNP based <i>KIR</i> /MALDI-	Same protective trends for donor Tel-B/B vs Tel-A/A (RR=0.52, p<0.07)

Scoring strategy reflecting the aKIR gene content		TCR <u>Graft source</u> BM, n=942 PBSC, n=467 <u>Conditioning</u> <u>regimen</u> Myeloablative conditioning		TOF + KIR-B content score	<u>ALL: no effect</u>
			KIR matchin	ıg model	
2010 (10)	Included pairs, n=86	Haploidentical donors	Retrospective	HLA for recipients: PCR-SSOP + PCR-	Compared to recipients from donors with identical KIR gene content, recipients with inhibitory KIR (iKIR) gene-mismatched have
POSITIVE EFFECT Inhibitory KIR gene mismatch	Paediatric + adult + AML, n=25 ALL, n=7	<u>Platform</u> TCR <u>Graft source</u> Bone-marrow	Consecutive inclusion from 2 clinical trials, between 1999 and 2007 Single-center study in	SBT HLA-A at intermediate resolution	 - increased OS (HR=0.37, p=0.0003) - significant for lymphoid diseases (HR=0.44, p=.03) - as well as myeloid diseases (HR=0.32, p=.004) - improved EFS (HR=0.51, p=0.01) - lower relapse rate (cause specific hazard ratio, and ratio)
	MDS, n=8	derived graft	Baltimore, USA		SDHR=0.53, p=0.025).

	CML/CMML, n=11 CLL, n=8 Lymphoma, n=21 MM, n=6 High risk malignancies only	<u>Conditioning</u> <u>regimen</u> NMAC + PT-Cy		 + HLA-B, -C, -DRB1 and -DQB1 alleles at a high-resolution <u>KIR, donors and</u> <u>recipients</u> Gene detection of all KIR genes using PCR-SSP. Inheritance of B haplotype deter- mined by the presence of specific aKIR and iKIR. 	No significant difference in aGVHD, cGVHD, NRM or engraftment failure
			Polymorp	hism	
2017 (11)	Included pairs, n=1328	Unrelated donor 10/10, n=716	Retrospective	HLA, donors and <u>recipients</u>	KIR3DL1/HLA-B combinations with <i>in-vitro</i> weak or no inhibition
POSITIVE EFFECT	Paediatric + adult	9/10, n= 612	Between 1989 and 2008	ProvidedbytheCenterforInternationalBloodandMarrowTransplant Research	when compared to strong inhibition combinations, have - lower relapse (HR=0.72, p=0.004)
KIR3DL1 level of expression: Strength of 3DL1/Bw4 interaction correlates	Only AML	<u>Platform</u> TCD, n=112 <u>Graft sources</u>	Transplants facilited by NMDP	KIR, for donors only * Gene detection for all KIR using PCR- SSO or –SSP	- lower overall mortality (HR=0.84, p=0.03) This effect is

with NK alloreactivity + biological proof of concept <i>In-vitro</i> testing of NK-cytotoxicity		BM, n=722 PBSC, n= 606 <u>Conditioning</u> <u>regimen</u> MAC, n=1123 RIC, n=186		* PCR-SBT or multiplex to classify <i>KIR3DL1</i> as <i>KIR3DS1</i> , high, low or null subtypes	 greater in high-risk group (relapse: HR=0.54, p<0.001 / mortality: HR=0.74, p<0.008). independent from the benefit of donor activating KIR2DS1 <u>Biological conclusions</u>: Correlation between predicted alloreactivity and alloreactivity measurements
2013 (12) POSITIVE EFFECT KIR2DL1 dimorphism 245C or 245R 245R is a more effective receptor than 245C	Included pairs, n=313 Paediatric only <u>Hematologic</u> malignancies, n=231 Lymphoid, n=116 Myeloid, n=115 <u>Solid tumors,</u> n=25 <u>Nonmalignant</u> diseases, n=57	MSD, n=86 MUD, n=98 Haploidentical donor, n=129 <u>Platform</u> TCD = 154 TCR = 159 <u>Conditioning</u> regimen MAC = 240 NMAC = 73	Retrospective Between January 2000 and January 2010. Monocentric, St Jude Children's Research (USA)	HLA, donors and recipientsHLA-A, -B, -C, and - DRB1 using DNA methodsKIR, for donors onlyGene detection by PCR-SSPKIR2DL1 allele typing using SNP assay	 KIR2DL1-R245 donor compared to 2DL1-C245 donor lead to increase survival Risk of death if RR donor compared with CC donor : HR=0.4, p=0.0001 Risk of death if RC donor compared with CC donor: HR, 0.42, p=0.0013 This effect : withstands the multivariate analysis is similar for patients with AML or ALL / in the subset of sibling, unrelated, or haploidentical donor / for T-cell depleted or replete grafts / in myeloablative or non-myeloablative settings as well is higher when patients receive a 2DL1-R245+ positive graft with HLA-C receptor-ligand mismatch

			Other	~S	 <u>higher PFS</u> - RR donor compared with CC donor: HR=0.42, p=0.0003 - RC donor compared with CC donor: HR=0.48, p=.0075 This effect: withstands the multivariate analysis is similar in patients with AML or ALL No significant correlation with grade II-IV aGVHD
2004 (13)	Included pairs, n=220	Matched sibling donor	Retrospective	HLA, donors and recipients	Results in myeloid malignancies
Model predicting	Paediatric + adults Myeloid	<u>Conditioning</u> regimen	Between January 1994 and April 2002	- Class I: PCR-SSP + HLA-C with the adequate level to determine C1 or C2 groups	1/ Homozygous C2 recipients have decreased 4y OS compared to those carrying at least one C1 allele (31.6% vs 56.1%, p<0.005)
alloreactivity if donor has aKIR and recipient lacks the ligand for its inhibitory counterpart	$\frac{\text{(n=112)}}{\text{AML } n= 52,}$ $\frac{\text{CML } n=49,}{\text{MDS } n=11}$	1000000000000000000000000000000000000	2 centers in Birmingham, UK : Children's Hospital and	- Class II: not mentioned	2/ In the subgroup of recipient C2-homozygoty:- the presence of <i>KIR2DS2</i> is significantly associated with decreased OS

Focused on association C1- recipients with 2DS2+ donors	Lymphoid (n=108) ALL n=54, NHL n=43, CLL n=11		Queen Elizabeth Hospital	KIR,onlyfordonorsGene detection of all genes using PCR- SSP	 but if <i>KIR2DS2</i> is absent, OS is not significantly different from those recipients who possess C1 alleles 3/ No other significant difference between any of the other pairs analysed.
NEGATIVE EFFECT					4/ No significant difference in the rates of aGVHD > grade II in any model <u>No statistical results in lymphoid malignancies</u>
2005 (14)	Included pairs, n=65	Matched sibling donor	Retrospective Between 1991	HLA, donors and recipients molecular techniques for HLA-A, -B, -C, -	 <u>General statistics</u> - iKIR genes present in most of the donors. - Most variations between 2 groups observed in the
Descriptive statistics	Paediatric + adult	<u>Platform</u> - TCR, n=31 - TCD, n=34	and 2002 Single center	DRB1, -DQB1 and - DPB1	 - Higher frequencies of donor aKIR genes in the non-relapsing group compared to the relapsing group but no significant difference in the frequencies of
Compare "relapse" group to "non- relapse" group and assess differences in KIR typing ⇔ Correlations between recipients' clinical outcomes and	AML, n= 22 ALL, n=16 CML, n= 27	<u>Graft sources</u> BM = 47 PBSC = 18	study in Brussel (academisch ziekenhuis– Vrije Universiteit Brussel)	KIR, donors and recipients Gene detection of <i>KIR2DL1-3,</i> <i>KIR3DL1-2,</i> <i>KIR2DS1-5</i> and <i>KIR3DS1</i> using PCR- SSP	 individual KIR genes No significant correlation between donors' total number of aKIR and relapse Donors 2DS1+/2DS2+

recipients' and donors' KIR typing POSITIVE EFFECT		<u>Conditioning</u> <u>regimen</u> Myeloablative conditioning			 decrease relapse rate compared other groups: OR=0.18, p=0.03. Effect withstanding the multivariate analysis. tend to increase 5y OS: 59.2 and 35.5% in the 2DS1+2DS2+ and other donors, respectively, p=0.109) <u>No statistical association between:</u> Relapse and recipient <i>HLA-C</i> groups only or in combination with the aKIR
					- Presence of a particular KIR gene or association and TRM, aGVHD or cGVHD
			Models com	parisons	
2004 (15)	Included pairs, n=36	Haploidentical	Retrospective	HLA, donors and recipients	In order of efficience for relapse of primary disease prediction
Compare 3 models of alloreactivity prediction	Paediatric patients (<18 yo)	<u>Platform</u> TCD <u>Graft source</u>	2 centers : Memphis (USA) Tuebingen (Germany)	 * Serology for HLA- A, -B, -DR specificities * Molecular biology for DRB1: PCR-SSO and -SSP 	 Receptor-ligand model HR=5.3, p=0.0078 Ligand ligand model HR=2.1, p=0.47 Cytotoxicicty model HR=1.4, p=0.76
- ligand-ligand model	Myeloid malignancy, n=17	Graft purification for CD34+ using mAbs		* if serologically difficult to split and for oldest samples +	<u>1) Receptor-ligand model</u> Absence of mismatch is associated to high risk of relapse in AML and ALL

 receptor-ligand model "cytotoxicity model": NK cell cytotoxicity against K562 cells lower than the median 1mo after transplantation should be predictive for high risk of relapse UNDETERMINED EFFECT 	Lymphoid malignancy, n=19	No GVHD prophylaxis (all grafts contain less than 3.10 ⁴ CD3 cells/kg)		PCR-SSP for class I of unrelated donorsKIR, donors and recipientsSurface expression of KIR molecules using flow cytometry and RT-PCR if KIR expression was difficult to defineKIR genotyping : PCR-SSP	 <u>2) Ligand–ligand model</u> - absence of mismatch is associated to high risk of relapse for AML only - the model misses some high-risk in AML - fails to classify ALL <u>3)"Cytotoxicity model"</u> The worst model in this serie
2010 (10) Compare 3 models of alloreactivity prediction - Ligand-ligand model - Haplotypes	Included pairs, n=86 AML, n=25 ALL, n=7 MDS, n=8 CML/CMML, n=11 CLL, n=8 Lymphoma, n=21	Haploidentical donors <u>Platform</u> TCR <u>Graft source</u> Bone-marrow derived graft	Retrospective Consecutive inclusion from 2 clinical trials, between 1999 and 2007 Single-center study in Baltimore, USA	HLA for recipients:PCR-SSOP + PCR-SBTHLA for donors:HLA-A atintermediateresolution+ HLA-B, -C, -DRB1and -DQB1 alleles ata high-resolutionKIR, donors andrecipients	 <u>iKIR mismatch</u> Compared to recipients from donors with identical KIR gene content, recipients of inhibitory KIR (iKIR) gene-mismatched have improved OS (HR=0.37, p=0.0003) significant for lymphoid diseases (HR=0.44, p=0.03) as well as myeloid diseases (HR=0.32, p=0.004) improved EFS (HR=0.51, p=0.01) lower relapse rate (cause specific hazard ratio, SDHR=0.53, p=0.025).

- Gene-gene model for aKIR and iKIR POSITIVE EFFECT	MM, n=6 High risk malignancies only	Conditioning regimen NMAC + PT-Cy		Gene detection of all KIR using PCR-SSP. Inheritance of B haplotype deter- mined by the presence of specific aKIR and iKIR.	No significant difference in aGVHD, cGVHD, NRM, or engraftment <u>Haplotype mismatch</u> <u>AA recipient transplanted with Bx donor</u> compared to AA donor have: - improved OS (HR=0.30, p=0.01) - improved EFS (HR=0.47, p=0.05) - lower NRM (HR=0.13, p=0.046) No significant effect on relapse, engraftment failure, aGVHD or cGVHD No significant correlation when recipient is Bx <u>No significant difference with other models</u>
2014 (16) Compare 2 models of alloreactivity prediction	Included pairs, n=57	Haploidentical donor <u>Platform</u>	Prospective Between 2004 and 2009	HLA, donors and recipients already known	KIR haplotypes, regardless of the pathology decrease relapse for recipients of Bx donors compared to AA donors (p=0.001). This effect

- ligand-ligand model - KIR haplotypes (⇔ KIR-B content score)	Adults only, refractory diseases AML,n=36 ALL,n=8	TCD (ex-vivo CD3/CD19 depletion) <u>Conditioning</u> regimen	Multicenter phase I/II study, 7 centers in Germany	KIR, for donorsonly* Gene detection ofall KIR genes usingreal time-PCR* Quality insurance	 - is greater if recipient is in partial remission (p=0.008) compared to CR (p=0.297) - is greater in AML recipients compared to ALL recipients
UNDETERMINED EFFECT	NHL/ mantle cell lymphoma/ CLL, n=6 CML/ CMML/ SMD,n=3 MM, n=4 <u>Remission</u> <u>status</u> CR, n=29 PR, n=28	Reduced intensity conditioning		through commercial typing kits	No effect on reconstitution of NK cells, no effect on NRM Ligand-ligand mismatch, for AML recipients only - reduces EFS compared to KIR matched pairs16.0 % vs 53.0 % respectively, HR=2.27, p=0.045
2017 (17)	Included pairs, n=106	MSD, n=36 MUD, n=22	Retrospective	HLA, recipients and <u>donors</u>	Donor Bx haplotype compared to AA haplotype - increases risk for grade III to IV aGVHD
Compare 3 models of alloreactivity prediction in	Paediatric + adult	MMUD, n=35 Unknown, n=13	Monocentric, Niigata University	Serologic typing at of HLA-A, -B, and - DRB1 until 2006 and by DNA typing of	A/A: 4.9% vs B/x: 20.0%; p= .02 - especially if associated with receptor-ligand mismatch

Japanese population Ligand-ligand model Receptor-ligand model Haplotype based models NEGATIVE EFFECT	AML, n=44 ALL, n=28 CML, n=14 MDS, n=9 NHL, n=11	Platform TCR without ATG Graft sources BM, n=86 PBSC, n=20 <u>Conditioning</u> regimen MAC, n=90 RIC, n=16	Medical Hospital (Japan) Between January 1989 and September 2011	HLA-A, -B, -C, and - DRB1 from 2007 HLA allele data were retrospectively retyped if possible <u>KIR, for donors</u> <u>only</u> Gene detection of all genes using PCR- SSO	no missing ligand: 7.7% vs 1 missing ligand and A/A: 5.3%, vs 1 missing ligand and B/x: 25.0; p=.047 No difference in 5-year OS, relapse and NRM
2018 (18) Compare several models of alloreactivity prediction - Haplotypes - Ligand-receptor	Included pairs, n=208 Adults only ALL, n=36 AML, n=71	Haploidentical donor <u>Platform</u> TCR platform with PT-Cy <u>Graft sources</u>	Retrospective Between October 2005 and December 2016 Single institution	HLA, donors and recipients High-resolution HLA-A, -B, -C, - DRB1, -DQB1, and - DPB1 using Sanger sequencing of at least exon 2 and 3 of class I loci and at least exon 2 of class II loci	KIR receptor-ligand mismatch for iKIR- improves OS (HR=0.63; p=0.050)- improves DFS (HR=0.57; p=0.012)- decreases relapse/progression (HR=0.41;p=0.001)When compared to donors with A/A haplotypes, donors KIR B/x with 2DS2- improve OS (HR=0.43; p=0.005)- improve DFS (HR=0.45; p=0.003)

0 0	/IDS/MPN/C /IL, n=42	PBSC, n=137		- decrease relapse/progression (versus B/x without 2DS2 : HR= 0.43, p=0.024 / versus A/A haplotype:
- KIR B content score	,	BM, n=71	KIR, donors and	
N	HL/HL/CLL,		<u>recipients</u>	- increase NRM (for A/A versus B/x with 2DS2:
- aKIR educational n=	=51			HR=5.74, p=0.001 / for B/x without 2DS2 versus B/x
models			Gene detection of all	with 2DS2: HR=3.76, p=0.039)
M	/IM, n=5	Conditioning	genes using PCR-	
- Effect of specific		<u>regimen</u>	SSP	
aKIR: KIR2DS1 and O	Others, n=3			No correlation for the other predictive models
KIR2DS2		MAC, n=86		
POSITIVE		NMAC, n=122		\rightarrow Design of an algorithm for donor selection
EFFECT				taking NK alloreactivity into account
				taking tyk anoreactivity into account

STUDIES

- 1. Gale R, Eapen M. Who is the best alternative allotransplant donor? *Bone Marrow Transplant* (2015) 50:S40–S42. doi:10.1038/bmt.2015.94
- 2. Tolar J, Sodani P, Symons H. Alternative donor transplant of benign primary hematologic disorders. *Bone Marrow Transplant* (2015) 50:619–627. doi:10.1038/bmt.2015.1
- 3. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. *Science* (2002) 295:2097–2100. doi:10.1126/science.1068440
- 4. Huang X-J, Zhao X-Y, Liu D-H, Liu K-Y, Xu L-P. Deleterious effects of KIR ligand incompatibility on clinical outcomes in haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion. *Leukemia* (2007) 21:848–851. doi:10.1038/sj.leu.2404566
- 5. Wanquet A, Bramanti S, Harbi S, Fürst S, Legrand F, Faucher C, Granata A, Calmels B, Lemarie C, Picard C, et al. Killer Cell Immunoglobulin-Like Receptor-Ligand Mismatch in Donor versus Recipient Direction Provides Better Graft-versus-Tumor Effect in Patients with Hematologic Malignancies Undergoing Allogeneic T Cell-Replete Haploidentical Transplantation

Followed by Post-Transplant Cyclophosphamide. *Biol Blood Marrow Transplant* (2018) 24:549–554. doi:10.1016/j.bbmt.2017.11.042

- 6. Shimoni A, Labopin M, Lorentino F, Van Lint MT, Koc Y, Gülbas Z, Tischer J, Bruno B, Blaise D, Pioltelli P, et al. Killer cell immunoglobulin-like receptor ligand mismatching and outcome after haploidentical transplantation with post-transplant cyclophosphamide. *Leukemia* (2019) 33:230–239. doi:10.1038/s41375-018-0170-5
- Hsu KC, Keever-Taylor CA, Wilton A, Pinto C, Heller G, Arkun K, O'Reilly RJ, Horowitz MM, Dupont B. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. *Blood* (2005) 105:4878–4884. doi:10.1182/blood-2004-12-4825
- 8. Nowak J, Kościńska K, Mika-Witkowska R, Rogatko-Koroś M, Mizia S, Jaskuła E, Polak M, Mordak-Domagała M, Lange J, Gronkowska A, et al. Donor NK cell licensing in control of malignancy in hematopoietic stem cell transplant recipients. *Am J Hematol* (2014) 89:E176-183. doi:10.1002/ajh.23802
- 9. Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Le CT, Marsh SGE, Geraghty D, Spellman S, Haagenson MD, et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. *Blood* (2010) 116:2411–2419. doi:10.1182/blood-2010-05-283051
- 10. Symons HJ, Leffell MS, Rossiter ND, Zahurak M, Jones RJ, Fuchs EJ. Improved survival with inhibitory Killer Immunoglobulin Receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation. *Biol Blood Marrow Transplant* (2010) 16:533–542. doi:10.1016/j.bbmt.2009.11.022
- Boudreau JE, Giglio F, Gooley TA, Stevenson PA, Le Luduec J-B, Shaffer BC, Rajalingam R, Hou L, Hurley CK, Noreen H, et al. KIR3DL1/ HL A-B Subtypes Govern Acute Myelogenous Leukemia Relapse After Hematopoietic Cell Transplantation. J Clin Oncol (2017) 35:2268–2278. doi:10.1200/JCO.2016.70.7059
- Bari R, Rujkijyanont P, Sullivan E, Kang G, Turner V, Gan K, Leung W. Effect of Donor KIR2DL1 Allelic Polymorphism on the Outcome of Pediatric Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol (2013) 31:3782–3790. doi:10.1200/JCO.2012.47.4007
- 13. Cook MA, Milligan DW, Fegan CD, Darbyshire PJ, Mahendra P, Craddock CF, Moss PAH, Briggs DC. The impact of donor KIR and patient HLA-C genotypes on outcome following HLA-identical sibling hematopoietic stem cell transplantation for myeloid leukemia. *Blood* (2004) 103:1521–1526. doi:10.1182/blood-2003-02-0438

- 14. Verheyden S, Schots R, Duquet W, Demanet C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. *Leukemia* (2005) 19:1446–1451. doi:10.1038/sj.leu.2403839
- 15. Leung W, Iyengar R, Turner V, Lang P, Bader P, Conn P, Niethammer D, Handgretinger R. Determinants of antileukemia effects of allogeneic NK cells. *J Immunol* (2004) 172:644–650. doi:10.4049/jimmunol.172.1.644
- Michaelis SU, Mezger M, Bornhäuser M, Trenschel R, Stuhler G, Federmann B, Oevermann L, Kanz L, Handgretinger R, Bethge WA. KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. *Ann Hematol* (2014) 93:1579–1586. doi:10.1007/s00277-014-2084-2
- 17. Hosokai R, Masuko M, Shibasaki Y, Saitoh A, Furukawa T, Imai C. Donor Killer Immunoglobulin-Like Receptor Haplotype B/x Induces Severe Acute Graft-versus-Host Disease in the Presence of Human Leukocyte Antigen Mismatch in T Cell-Replete Hematopoietic Cell Transplantation. *Biol Blood Marrow Transplant* (2017) 23:606–611. doi:10.1016/j.bbmt.2016.12.638
- 18. Solomon SR, Aubrey MT, Zhang X, Piluso A, Freed BM, Brown S, Jackson KC, Morris LE, Holland HK, Solh MM, et al. Selecting the Best Donor for Haploidentical Transplant: Impact of HLA, Killer Cell Immunoglobulin-Like Receptor Genotyping, and Other Clinical Variables. *Biol Blood Marrow Transplant* (2018) 24:789–798. doi:10.1016/j.bbmt.2018.01.013