I. APPENDIX
A. Proof of Auxiliary Lemmas for Theorem 1

Our proof follows similar arguments as [1|] with necessary
modifications for beamspace and multi-snapshot scenario. For
completeness, we provide all auxiliary lemmas used.

Preliminaries

~

Let S1, So be any orthonormal bases for R(U,,) and R(U,),
respectively. The principal (or canonical) angles between the
subspaces R(U,) and R(U,) are defined as the ©(S1,Ss) :=
[wi,wa, - ,wg]T where wy € [0,7/2] satisfies:

cos(w;) = 04(STS,) (43)

We consider the SVD of SS, = USXV# . Since ESPRIT is
invariant to the exact choice of the basis, for our analyAsis we
will consider the orthonormal bases for R(U,) and R(U,) as
U, = SlfJ, and ﬁy = 82\7. In this case, it can be verified
that the principal angles defined in can be written as:

cos(w;) = |uf{ﬁ,|

Here we assumed that the singular vectors are ordered such
that wy > wg > -+ > wg. We also denote

sin(@(U,, U,)) = [sin(w; ), sin(wa), - - , sin(ws)]”

The augmented noise matrix is given by:
N,
N, — M

where Ni, Ny € CM~1XT represent matrices formed by

selecting the first M — 1 rows and last M — 1 rows of N,
respectively. Let N = W N, we have the following bound:

N3 IWIZ(INI3 + [N2[3)

<
< 2 WIIIN3

(49)

where the first inequality follows from the fact that |N||3 <
IN1]|2 + [|N2||3, and the second inequality holds since both
N7, Ny are submatrices of N.

For any matrix F, we adopt the notation oy (F) := ||F||2,
and opin(F) := 1/[|F1|l2. We first use Wedin’s theorem [2] to
bound ||U, — Uylla.

[2]). Consider matrices

Lemma 1 (Wedin’s Theorem
A, B, N ¢ CM*N such that

B=A+N

Consider the Singular Value Decompositions of A and B:

H
3 Vv
ST M
> v,
B = [U; U] ! io ‘7(1)]

where U; € CM*L, 61 € CMxL consist of the L
principal singular vectors of A and B, respectively. Define
A1 = U121V{{, AO = UOEOV({{, Bl = U121V{1,

By = ﬁoiovglf O’max(Ao) < « and O'm,',,(Bl) >a+46
for some oo > 0 and 6 > 0, the following holds

NV N7U
[ sin O(R(AL), R(By))| < 2t 1”§’ IN"Unl2)
Lemma 2. Consider the matrices A, B1, U1,V defined in
Lemma |1} If rank(A) = L, and |[N|l2 < or(A)/2, the
following holds

. 2max{[|[NV,|ls, [NU, |2}
[ sin ®(R(A), R(B1))llee < 1 (A)

Proof. Note that since rank(A) = L, we have Ay = 0,
and opmin(A) = o (A). Using Weyl’s theorem [3]] for matrix
perturbation, we can write

O'min(Bl) Z Umin(A) - ||N||2 Z

O'L(A)
2

where the last inequality follows from the assumption ||N|j2 <
o (A)/2. The conditions of LemmaI] are satisfied with a = 0
and 6 = o, (A) completing the proof of Lemma

We will also be using the following standard result from [4,
Pg. 36].

Lemma 3. For any matrices A € CM*X agnd B € CKXT,
(M > K) where rank(A) = K, we have

CTK(AB) Z O’K(A)O'K(B)
Lemma 4. Let Y = BX + N, where Rank (BX) = S. Con-
sider the Singular Value Decompositions: BX = UyEyV‘H,
Y = [U, U, %, [V VI where U,, U, € C*Nx3
consists of the S principle singular vectors. Assuming that the

noise is bounded as |N||3 < o5(B)os(X)/2, the following
holds

2v/25|N||;
05(B)os(X)
Proof. When the noise N is bounded by [N, <
0s(B)og(X)/2 < 05(BX)/2, the assumptions of Lemma
[Z] are satisfied for L = .S, which implies
2max{||[NV, s, [N"U, |2}
- Js(BX)
2max{||[NV, o, [N"U, |2}
B os(B)os(X)
Using the fact ||V, ||2 = 1, [|Uyll2 = 1, we have
. o 2|NJl2
sin®(U,,U < —
|| ( Y y)Hoo O'S(B)O’S(X)
Now, underA the canonical basis assumption, we have
| sin®(Uy, Uy)|loc = sin(wq) and for i =1,2,---5

U, — Tyl < (50)

[5in©®(U,, U)o

619

[t; — w2 = 2(1 — coswy) < 2(1 — cos®wy) < 2sin? wy,
Therefore,
s 1/2
U, = Ull2 < U, =T, |1 = (Z [ ul-n%)
i=1

< (28sin®wp)Y/? = V2S sinw, (52)



The proof is completed by combining (52)) and (51). O

Lemma 5. Consider the measurement model in (14). If

rank(BX) = S, and |[U, — U, |2 < 05(U1)/2, then
O | S O
v vl < ——-= 53

Proof. Notice that

@ — @y = (U] - UNU, + UJ(U, — Uy)|l2
< (T} -~ Uh). ||U2||2+||U*|| 1(Ts — Uy)|l2
< /(T = U)o + [[UT 2T, — U )|

where the last inequality follows from the fact that Ug, 62 U,
are submatrices of U, and U — Uy, respectively. Therefore,
we have || Us|| < ||Uy|\2 =1 and 102~ Usl2 < [0, ~U, ..
By the assumption in this lemma, we have,

os5(Ui)
2

We use a result from [5, Theorem 3.2] which states that a
matrix F with rank S, and its perturbed matrix F = F + E
satisfy the following inequality:

U, —Uyl2 < ||U, — U |l2 < (54)

3| Ell2
os(F)(os(F) — [ Ell2)
provided the perturbation satisfies [|Ey < os(F). We use this
result by substituting F' with U, and F with U;.

From (54)), the perturbation condition is satisfied and this
result leads to:

[ P

N 3|10, - U
101~ Ul < [U: = Uil
05(U1)(0s(Ur) — ||Uy — Uylf2)
610, — U2
< /-4 —J77 (55
05(U1)2
Therefore, we have that
T <( 6, 1 )nﬁ U,
= \os(U)2 T os(Uy)) Y P
70, — U,z
< —-—J —I7° 56
S T e (Uh)? (56)
O

Lemma 6. Consider the measurement model in (14) such that
(17) holds. Then the following bound is satisfied:

= 1425 |N]|
Proof. From (17) and (#9), we have
1Nl < 05(B)os(X)os(Uy) < 05(B)os(X) (58)

8v28 - 2
where the second inequality follows from the fact that
05(U1) <1 and S > 1. By applying Lemma {4 (0) holds.
Now, (30) and together imply that [|[U, — U,|. <
05(U1)/2. This ensures that the conditions of Lemma
are satisfied. Combining (33) and (50) leads to the desired
result. O

Lemma 7.

md(F, F) < %md(\Il, ) (59)

Proof. The proof follows directly from eq. (IIL.1) in [1] O

Lemma 8. Consider the measurement model in (14). If
rank(BX) = S, then

SIBll2
os(B)
Proof. Based on (9), ¥ is diagonalizable by the invertible

matrix P. Using Bauer-Fike theorem, [|0], [4, Theorem 3.3]
and Lemma[7] we have

md(F, ]?)

1% — |, (60)

md(F, F) < %(25 kP — B ©1)

where x(P~1) = ||P|]2[[P~}|]2. To bound x(P~1), we use
the fact that U, = BP and ||U,|» = 1. This implies that

_ B2
P < k(B)= I 62
R(P1) < k(B)= s (62)
O
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