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I. APPENDIX

A. Proof of Auxiliary Lemmas for Theorem 1

Our proof follows similar arguments as [1] with necessary
modifications for beamspace and multi-snapshot scenario. For
completeness, we provide all auxiliary lemmas used.

Preliminaries

Let S1,S2 be any orthonormal bases for R(Uy) and R(Ûy),
respectively. The principal (or canonical) angles between the
subspaces R(Uy) and R(Ûy) are defined as the Θ(S1,S2) :=
[ω1, ω2, · · · , ωS ]

T where ωk ∈ [0, π/2] satisfies:

cos(ωi) = σi(S
H
1 S2) (48)

We consider the SVD of SH
1 S2 = ŨΣ̃ṼH . Since ESPRIT is

invariant to the exact choice of the basis, for our analysis we
will consider the orthonormal bases for R(Uy) and R(Ûy) as
Uy = S1Ũ, and Ûy = S2Ṽ. In this case, it can be verified
that the principal angles defined in (48) can be written as:

cos(ωi) = |uH
i ûi|

Here we assumed that the singular vectors are ordered such
that ω1 ≥ ω2 ≥ · · · ≥ ωS . We also denote

sin(Θ(Uy, Ûy)) := [sin(ω1), sin(ω2), · · · , sin(ωS)]
T

The augmented noise matrix is given by:

Ns :=

[
N1

N2

]
where N1,N2 ∈ CM−1×T represent matrices formed by
selecting the first M − 1 rows and last M − 1 rows of N,
respectively. Let Ñ = WHNs, we have the following bound:

∥Ñ∥22 ≤ ∥W∥22(∥N1∥22 + ∥N2∥22)
≤ 2∥W∥22∥N∥22 (49)

where the first inequality follows from the fact that |Ns∥22 ≤
∥N1∥22 + ∥N2∥22, and the second inequality holds since both
N1,N2 are submatrices of N.

For any matrix F, we adopt the notation σmax(F) := ∥F∥2,
and σmin(F) := 1/∥F†∥2. We first use Wedin’s theorem [2] to
bound ∥Uy − Ûy∥2.

Lemma 1 (Wedin’s Theorem [2]). Consider matrices
A,B,N ∈ CM×N such that

B = A+N

Consider the Singular Value Decompositions of A and B:

A = [U1 U0]

[
Σ1

Σ0

] [
V1

V0

]H
B = [Ũ1 Ũ0]

[
Σ̃1

Σ̃0

][
Ṽ1

Ṽ0

]H
where U1 ∈ CM×L, Ũ1 ∈ CM×L consist of the L
principal singular vectors of A and B, respectively. Define
A1 := U1Σ1V

H
1 , A0 := U0Σ0V

H
0 , B1 := Ũ1Σ̃1Ṽ

H
1 ,

B0 := Ũ0Σ̃0Ṽ
H
0 .If σmax(A0) ≤ α and σmin(B1) ≥ α + δ

for some α ≥ 0 and δ > 0, the following holds

∥ sinΘ(R(A1),R(B1))∥∞ ≤ max{∥NV1∥2, ∥NHU1∥2}
δ

Lemma 2. Consider the matrices A,B1,U1,V1 defined in
Lemma 1. If rank(A) = L, and ∥N∥2 ≤ σL(A)/2, the
following holds

∥ sinΘ(R(A),R(B1))∥∞ ≤ 2max{∥NV1∥2, ∥NHU1∥2}
σL(A)

Proof. Note that since rank(A) = L, we have A0 = 0,
and σmin(A) = σL(A). Using Weyl’s theorem [3] for matrix
perturbation, we can write

σmin(B1) ≥ σmin(A)− ∥N∥2 ≥ σL(A)
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where the last inequality follows from the assumption ∥N∥2 ≤
σL(A)/2. The conditions of Lemma 1 are satisfied with α = 0
and δ = σL(A) completing the proof of Lemma 2.

We will also be using the following standard result from [4,
Pg. 36].

Lemma 3. For any matrices A ∈ CM×K , and B ∈ CK×T ,
(M > K) where rank(A) = K, we have

σK(AB) ≥ σK(A)σK(B)

Lemma 4. Let Ŷ = BX+ Ñ, where Rank (BX) = S. Con-
sider the Singular Value Decompositions: BX = UyΣyV

H
y ,

Ŷ = [Ûy Ûn]Σ̂y[V̂
H
y V̂H

n ]H , where Uy, Ûy ∈ C2N×S

consists of the S principle singular vectors. Assuming that the
noise is bounded as ∥Ñ∥2 ≤ σS(B)σS(X)/2, the following
holds

∥Uy − Ûy∥2 ≤ 2
√
2S∥Ñ∥2

σS(B)σS(X)
(50)

Proof. When the noise Ñ is bounded by ∥Ñ∥2 ≤
σS(B)σS(X)/2 ≤ σS(BX)/2, the assumptions of Lemma
2 are satisfied for L = S, which implies

∥ sinΘ(Uy, Ûy)∥∞ ≤ 2max{∥ÑVy∥2, ∥ÑHUy∥2}
σS(BX)

≤ 2max{∥ÑVy∥2, ∥ÑHUy∥2}
σS(B)σS(X)

Using the fact ∥Vy∥2 = 1, ∥Uy∥2 = 1, we have

∥ sinΘ(Uy, Ûy)∥∞ ≤ 2∥Ñ∥2
σS(B)σS(X)

(51)

Now, under the canonical basis assumption, we have
∥ sinΘ(Uy, Ûy)∥∞ = sin(ω1) and for i = 1, 2, · · ·S

∥ûi − ui∥22 = 2(1− cosωk) ≤ 2(1− cos2 ωk) ≤ 2 sin2 ωk

Therefore,

∥Uy − Ûy∥2 ≤ ∥Uy − Ûy∥F =

(
S∑

i=1

∥ûi − ui∥22

)1/2

≤ (2S sin2 ω1)
1/2 =

√
2S sinω1 (52)
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The proof is completed by combining (52) and (51).

Lemma 5. Consider the measurement model in (14). If
rank(BX) = S, and ∥Uy − Ûy∥2 ≤ σS(U1)/2, then

∥Ψ− Ψ̂∥2 ≤ 7∥Uy − Ûy∥2
σS(U1)2

(53)

Proof. Notice that

∥Ψ− Ψ̂∥2 = ∥(Û†
1 −U†

1)Û2 +U†
1(Û2 −U2)∥2

≤ ∥(Û†
1 −U†

1)∥2∥Û2∥2 + ∥U†
1∥2∥(Û2 −U2)∥2

≤ ∥(Û†
1 −U†

1)∥2 + ∥U†
1∥2∥(Ûy −Uy)∥2

where the last inequality follows from the fact that Û2, Û2−U2

are submatrices of Ûy and Ûy −Uy , respectively. Therefore,
we have ∥Û2∥ ≤ ∥Ûy∥2 = 1, and ∥Û2−U2∥2 ≤ ∥Ûy−Uy∥2.
By the assumption in this lemma, we have,

∥Û1 −U1∥2 ≤ ∥Ûy −Uy∥2 ≤ σS(U1)

2
(54)

We use a result from [5, Theorem 3.2] which states that a
matrix F with rank S, and its perturbed matrix F̃ = F + E
satisfy the following inequality:

∥F† − F̃†∥2 ≤ 3∥E∥2
σS(F)(σS(F)− ∥E∥2)

provided the perturbation satisfies ∥E∥2 < σS(F). We use this
result by substituting F with U, and F̃ with Û1.

From (54), the perturbation condition is satisfied and this
result leads to:

∥Û†
1 −U†

1∥2 ≤ 3∥Û1 −U1∥2
σS(U1)(σS(U1)− ∥Û1 −U1∥2)

≤ 6∥Ûy −Uy∥2
σS(U1)2

(55)

Therefore, we have that

∥Ψ− Ψ̂∥2 ≤
(

6

σS(U1)2
+

1

σS(U1)

)
∥Ûy −Uy∥2

≤ 7∥Ûy −Uy∥2
σS(U1)2

(56)

Lemma 6. Consider the measurement model in (14) such that
(17) holds. Then the following bound is satisfied:

∥Ψ− Ψ̂∥2 ≤ 14
√
2S∥Ñ∥2

σS(B)σS(X)σS(U1)2
(57)

Proof. From (17) and (49), we have

∥Ñ∥2 ≤ σS(B)σS(X)σS(U1)

8
√
2S

≤ σS(B)σS(X)

2
(58)

where the second inequality follows from the fact that
σS(U1) ≤ 1 and S ≥ 1. By applying Lemma 4, (50) holds.
Now, (50) and (58) together imply that ∥Uy − Ûy∥2 ≤
σS(U1)/2. This ensures that the conditions of Lemma 5
are satisfied. Combining (53) and (50) leads to the desired
result.

Lemma 7.

md(F , F̂) ≤ 1

2
md(Ψ, Ψ̂) (59)

Proof. The proof follows directly from eq. (III.1) in [1]

Lemma 8. Consider the measurement model in (14). If
rank(BX) = S, then

md(F , F̂) ≤ S∥B∥2
σS(B)

∥Ψ− Ψ̂∥2 (60)

Proof. Based on (9), Ψ is diagonalizable by the invertible
matrix P. Using Bauer-Fike theorem, [6], [4, Theorem 3.3]
and Lemma 7, we have

md(F , F̂) ≤ 1

2
(2S − 1)κ(P−1)∥Ψ− Ψ̂∥2 (61)

where κ(P−1) = ∥P∥2∥P−1∥2. To bound κ(P−1), we use
the fact that Uy = BP and ∥Uy∥2 = 1. This implies that

κ(P−1) ≤ κ(B)=
∥B∥2
σS(B)

(62)
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