
Supplementary Methods

Here we will provide a detailed implementation of CRANE (Constrained Random Al-
teration of Network Edges) and describe some of the challenges in randomizing weighted
bipartite networks with fixed node strength.

1 Edge Weight Perturbations Propagate

As an example, we will present a naive perturbation method to portray some of the chal-
lenges in altering network edge weights while fixing the node strength. We start with a
bipartite network with m TFs and n genes. The edge weight from TF i to gene j is given
by aij . We want to sample networks with matching strength sequence for both the TF
nodes and gene nodes. The node degrees are given by

di =
n∑

j=1

aij (1)

kj =
m∑
i=1

aij (2)

m∑
i=1

di =
n∑

j=1

kj (3)

Fixing the strength sequences means we can only freely perturb (n − 1) edges for every
TF and (m− 1) edges for every gene. The following steps will perturb the network while
keeping the strength sequence the same.

Step 1: For each TFi where i ∈ [1,m − 1], we can choose any perturbation for each
edge to genes Gj for j ∈ [1, n − 1], and the final edge bin is determined by the degree of
TFi:

bij = aij + ∆ij ∀j ∈ [1, n− 1] (4)

bin = di −
n−1∑
j=1

bij = ain −
n−1∑
j=1

∆ij (5)

Step 2: The edge weights from TFm to all the n genes, given by bmj , are all completely
determined by the constraints on the network at this point, and they can be computed as
follows:

bmj = kj −
m−1∑
i=1

bij (6)

However, due to the variability in the
∑n−1

j=1 ∆ij the final edges could end up with either
very large or very small values. This is undesirable since we do not want to have one TF
or gene with edge weight that is significantly outside of its normal range.

1



2 An Iterative Algorithm for Perturbing the network

We introduce Constrained Random Alteration of Network Edges (CRANE), a computa-
tional method that limits the propagation of edge weight perturbations. In this algorithm
we will perturb and update the edge weights as we add one TF at a time while keeping
the strength sequence the same.

Optional Step: If desired, we can introduce random perturbation to the degree se-
quence to both the TF nodes and gene nodes. The strength of perturbation will be deter-
mined by β. We then distribute the perturbation equally to all the edges.

u ∼ N(0, β) (7)

d̃i = di + u (8)

k̃j = kj + u (9)

ãij = aij +
d̃i − di
m

+
k̃j − kj
n

(10)

CRANE Algorithm: To start, we will initialize some values. Given aij is the adja-
cency matrix of the original network where rows and columns are randomly shuffled and
bij is an empty adjacency matrix that will become the perturbed network, we initialize
the first row (first TF) of bij with edges from the first row of aij . Additionally we define
our perturbation parameters by sampling random numbers from a normal distribution cen-
tered at zero with standard deviation matching the original edge weights from the same
TF. The parameter α determines the strength of the perturbation. Then for each TFl,
where l = [1, · · · ,m−1], we will perturb each edge to genes Gj for j ∈ [1, n] and normalize
the edge weights with dl∑n

j=1 blj
to keep equation (1) true. Next, we determine the edges

arising from TFl+1 to gene Gj (values in bl+1,j) edges by subtracting the degree from the

current perturbed state
∑l

i=1 bij from the expected gene degree from the original network∑l+1
i=1 aij . This allows us to keep equation (2) true. For some edges arising from TFl+1

to gene Gj (values in bl+1,j), the individual edge values may exceed the maximum or the
minimum edge weight from the original network. Therefore we include an inner loop to
correct the extremely large or small values. For any bl+1,j bound outside of aij , we add
bl+1,j − min(aij) or bl+1,j − max(aij) to blj . The adjusted blj values are normalized and
a new set of bl+1,j edge weights are computed. This inner loop will repeat until extreme
values are corrected as describe above. The algorithm iteratively move down each row in
bij and repeat the procedure until the matrix is filled. The full algorithm is provided below
in pseudocode format.

2



Algorithm 1 CRANE

1: Given aij is the m× n adjacency matrix
2: Randomize rows and columns of aij
3: Set bij = Om×n

4: Initialize b1j = a1j
5: for l = 1, . . . ,m− 1 do
6: σ = standard deviation of row i
7: u ∼ N(0, σ)
8: perturb blj by adding α ∗ u, where α is the strength parameter

9: normalize blj by multiplying
∑n

j=1 alj∑n
j=1 blj

10: compute the next row edges with bl+1,j =
∑l+1

i=1 aij −
∑l

i=1 bij
11: while bl+1,j > max(aij) or bl+1,j < min(aij) do
12: if any value in bl+1,j is less than min(aij) then
13: blj = blj + bl+1,j −min(aij)
14: else if any value in bl+1,j is greater than max(aij) then
15: blj = blj + bl+1,j −max(aij)
16: end if
17: normalize blj by multiplying

∑n
j=1 alj∑n
j=1 blj

18: recompute the next row edges with bl+1,j =
∑l+1

i=1 aij −
∑l

i=1 bij
19: end while
20: end for

3




