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1 FORMAL DEFINITION OF THE INVESTIGATED DYNAMICS
We report here and complete the definitions of the investigated dynamics as anticipated in the main
manuscript. The linear hard-bound dynamics (L-HB) is defined as

dw±
dn

= α±, (S1)

with α± ∈ (0, 1] and where the (·)+ and the (·)− stand for potentiation and depression, respectively.
Following Fusi and Abbott (2007); Frascaroli et al. (2018); Brivio, S. and Conti, D. and Nair, M. V. and
Frascaroli, J. and Covi, E. and Ricciardi, C. and Indiveri, G. and Spiga, S. (2019), the NL-SB equation is
given by {

dw+
dn = α+(1− w)γ+

dw−
dn = −α−wγ−

, (S2)

with α± ∈ (0, 1] and γ± ≥ 1. The NL-HB dynamics is the truncated version of the NL-SB properly
re-scaled between 0 and 1, as follows{

dw+
dn = α+

wstop,+
(1− w · wstop,+)γ+

dw−
dn = − α−

wstop,−
(w · wstop,− + 1− wstop,−)γ−

, (S3)

where α± ∈ (0, 1], γ± ∈ [1,+∞). Nstop,± are the values of n at which the corresponding NL-SB dynamics
is cut to get a NL-HB one. wstop,± are the normalization terms that depend on the value of Nstop,±, as{

wstop,± = 1− eα±Nstop,± for γ = 1

wstop,± = 1− [1 + α±(γ± − 1)Nstop,±]
1/1−γ± for γ > 1

, (S4)

which are different depending on the value of γ because of the difference in the integration of eq. S3.
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2 FIGURE OF MERITS OF SYNAPTIC DYNAMICS
The investigated figures of merits are the synaptic resolution, to be also considered as the effective number
of levels, η, and the non-linearity, λ. The definition of both is given in the main manuscript. In some cases,
the synaptic resolution assumes an analytic form as reported in table S1.

η

L-HB 1
α±

NL-SB γ±+1
α±

NL-HB (γ± > 1) w2
stop,±(γ±+1)

α±

{
1− [1 + α±(γ± − 1)Nstop,±]

γ±+1
1−γ±

}−1

NL-HB (γ± = 1) 2w2
stop,±
α±

{
1− e−2α±Nstop,±

}−1

Table S1. Analytical expressions of the resolution, η, for the investigated dynamics.

The definition of the resolution parameter is arbitrary defined to have the possibility to evaluate a finite
value also for soft-bound dynamics which reach the boundary values only after an infinite number of pulses.
In order to give an intuition of how the estimator of the resolution works, we consider a generic potentiation
NL-HB dynamics described by a different equation compared to those used in the main manuscript. The
test dynamics is described by the following equation S5:{

dw
dn = αe−βw w ∈ [0, 1]
dw
dn = 0 elsewhere

, (S5)

where α and β are two free parameters. The dynamics are reported in Figure S1 for α =
[1e−2, 3e−2, 1e−1, 3e−1, 1] and β = [0.5, 1.5, 2.5]. Figure S1b,d,f report the same data as Figure S1a,c,e
but with a logarithmic x axis. The dynamics have hard bounds that are met when the weight assumes the
unitary value. In the figure, the red dots and vertical lines indicate the effective number of levels, η, which
are positioned in the same x axis as the dynamics. This graphic method allows for an easy comparison
between the η value and the minimum number of pulses that is required to bring the weight from 0 to 1,
equivalent to Nstop. The figure shows that when the dynamics is roughly linear and, hence, the synaptic
levels are about evenly spaced there is no significant difference between η and Nstop, (figure S1a-b).
Increasing the non-linearity and, thus, accumulating more and more weight steps close to weight boundary,
reduces the effective number of levels, thus moving lower and lower the η values away from Nstop from
Figure S1c-d to Figure S1e-f. These results indicate the given definition of η is at least reasonable.
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Figure S1. Weight evolution as a function of pulses for the tested dynamics defined by equation S5 for
various α and β parameters. Figure S1b,d,f report the same data as Figure S1a,c,e but with a logarithmic x
axis.

Frontiers 3



Supplementary Material

3 WEIGHT EVOLUTION DURING TRAINING
During SNN training the synaptic weights are tuned according to the learning rule defined in the main
manuscript. It is a general fact that, at the end of the training, weight-independent synaptic dynamics result
in a bimodal weight distribution, with weight values accumulating at the boundary of the allowed weight
range. Conversely, weight-dependent synaptic dynamics tend to accumulate the weight values somewhere
in the middle of the allowed weight range. Brivio, S. and Conti, D. and Nair, M. V. and Frascaroli, J. and
Covi, E. and Ricciardi, C. and Indiveri, G. and Spiga, S. (2019); Morrison et al. (2007) This fact is well
reproduced by our network as reported in Figure S2. For the L-HB cases, final weight distributions show
very sharp bimodal distributions, while nonlinear cases show accumulation of weights in intermediate
values of the allowed weight range. For the nonlinear case, one distribution peak dominates and small
contribution arise as small bumps far away from the main peak (e.g. in Figure S2g-i) or as a shoulder to the
main peak (e.g. in Figure S2m-n).

Figure S2. Weight distributions after training for various dynamics cases.

In order to track, during training, the formation of two weight contributions (two peaks), which is
fundamental to develop the classification ability, we use different algorithms to identify two clusters. The
most appropriate method that we used is the k-means algorithms. As a check, the two clusters are identified
also by taking the average of the weight values above and below a threshold of 0.5. We name this latter
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as avehalf algorithm. Furthermore, the two clusters are identified also by taking the average of the weight
values above and below a threshold value that is the average of all the synaptic weights. We name this latter
as avemean algorithm. The Figures S3-S5 report the positions of the centers of the two clusters as obtained
through the various algorithms for the L-HB, the NL-SB, and the NL-HB synapses, respectively. The
results obtained through the k-means, the avehalf , and the avemean algorithms are reported as solid line,
dashed line and as symbols, respectively. Furthermore, the contrast, i.e. the distance between the centers of
the two clusters is reported in black. Figure S3 clearly shows that the training of L-HB synapses gives rise
to two well separated distributions and hence, high contrast. Conversely, the nonlinear synapses give rise
to low contrast. The contrast is always below 0.5 for the NL-SB case and below 0.4 for the NL-HB case.
In any case, it is possible to notice that the three employed algorithms qualitatively agree on the contrast
estimation.

Figure S3. Evolution of the weight of L-HB synapses during training. The figure reports the position
of the two weight clusters centers and distance of the two cluster centers (contrast) evaluated with three
different algorithms, as described in the text: k-means (solid line), avehalf (dashed line), and avemean (dotted
line with symbol). Blue lines correspond to the lower weight cluster centers, orange lines to the higher
weight cluster centers, and the black lines to the weight contrast. The quantities are plotted against the
number of training images. Panels (a)-(d) report the evolution for different α values.
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Figure S4. Evolution of the weight of NL-SB synapses during training. The figure reports the position
of the two weight clusters centers and distance of the two cluster centers (contrast) evaluated with three
different algorithms, as described in the text: k-means (solid line), avehalf (dashed line), and avemean (dotted
line with symbol). Blue lines correspond to the lower weight cluster center, orange lines to the higher
weight cluster center, and the black lines to the weight contrast. The quantities are plotted against the
number of training images. Panels (a)-(d) report the evolution for different α values.
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Figure S5. Evolution of the weight of NL-HB synapses during training. The figure reports the position
of the two weight clusters centers and distance of the two cluster centers (contrast) evaluated with three
different algorithms, as described in the text: k-means (solid line), avehalf (dashed line), and avemean (dotted
line with symbol). Blue lines correspond to the lower weight cluster center, orange lines to the higher
weight cluster center, and the black lines to the weight contrast. The quantities are plotted against the
number of training images. Panels (a)-(d) report the evolution for different α values.
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4 NETWORK EFFICIENCY
We report in Figure S6 the network efficiency, as defined in eq. 7 of the manuscript, as a function of the
classification accuracy, CA
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Figure S6. Network efficiency, ε, as a function of the classification accuracy, CA, for the various
investigated dynamics
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5 SUMMARY OF THE RESULTS
The following table S2 collects all the details of the dynamics parameters; corresponding resolution, η, and
non-linearity, λ, classification accuracy, CA, training time, ∆train, and efficiency, ε, as defined in the main
text.

α± γ± Nstop,± η λ CA (%) ∆train ε

L-HB 0.1 - - 10 0 68.6 0.03 0.83

0.02 - - 50 0 79.2 0.13 0.83

0.01 - - 100 0 81.4 0.17 0.82

0.005 - - 200 0 82.5 0.33 0.75

0.002 - - 500 0 82.1 0.67 0.58

NL-SB 0.02 9 - 500 0.02 75.1 0.67 0.54

0.016 7 - 500 0.020 75.6 0.67 0.54

0.008 3 - 500 0.010 84.0 0.58 0.63

0.004 1 - 500 0.005 84.2 0.42 0.71

NL-HB 0.002 3 500 402 0.006 83.8 0.33 0.75

0.008 3 500 225 0.015 84.1 0.30 0.77

0.03 3 500 90 0.047 82.0 0.08 0.87

0.002 1.16 559 500 0.004 83.7 0.67 0.59

0.002 4.57 796 500 0.006 84.4 0.42 0.71

0.002 9.88 1281 500 0.009 84.5 0.37 0.74

Table S2. List of the investigated dynamics defined by the values of their parameters α, γ, and Nstop. The corresponding values for resolution, η, non-linearity,
λ, classification accuracy, CA, training time ∆train, and efficiency, ε, are also reported.
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