Appendix A: Explicit derivation of the Propagator of Delta Potentials
for the Case: )\ is constant

In this part we will show that if the strength of J potential given in Eq. (13) is constant A(¢) = A, it is possible to
obtain an explicit expression for the Green’s function or the propagator and therefore to get an explicit expression

for the wave function for all times ¢ > 0. Since X is constant, £ {\(t)¥(0,t)} = AL {¢(0,t)} = M\)(0,s). Using
this, we write Eq. (17) as
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Writing this equation for z = 0 and solving it for (0, s), we get
(0, 8) = Wi z)\/ dz’ eVl (2, 0) . (A.2)

After inserting this expression back into the Eq.(A.1) we find
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The factor multiplying (', 0) in the integral is Laplace transform of the Green’s function in time variable:
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By taking the inverse Laplace transform of this expression we get
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where we have used the integral representation erfc[—b/(2y/a)] = e~V /) JoTn fooo dz e~ T and erfe(z) =

1—erf(z) = (2/y/m) [ da’ e=*"”. Note that the initial value problem is expressed at time ¢ = 0, but the wave
function can be given at any initial time ¢ = ¢y and all the expressions in ¢ is replaced by t — f3. Another
common notation for Green’s function is G(z,t; 2, ty). Hence, we obtain

Wiz, t) = /z ' { \/ﬁ ox [z‘(x ;;/)2]

_}mb+mwﬁﬂmﬁﬂxﬂ+ﬂQHwﬂw

This result is consistent with the ones obtained by different methods [24,25,36].

Appendix B: Explicit derivation of the Propagator of Delta Potentials
for the Case: A(t) = o/t
We review the explicit propagator derivation of Dirac delta potential for strengths with inversely proportional

in time originally given in [36]. The general expression (9) for the Laplace transform of the wave function in
this particular case A(t) = ¢, where « is a constant, becomes

> da’ 6i\/ﬁ\zfm’| Z',0) — i
/. vl 0) - s

18

Dz, s) = eVislal o {%p(o, t)} . (B.1)

1
2V/is



Note that

t
Using this result and choosing x = 0 in Eq. (B.1) we get
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If we define -
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the Eq.(B.1) turns out to be
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Since (0, s) = —d“d—(:'), the above expression yields
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The solution of this first order differential equation gives
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By taking the derivative under the integral sign, we get

B 1 ) 1 oiVis|2!|

Using the Eq. (10), we can write
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Inserting this expression for ¢(0,%) in the Laplace transform of ¢4 (0,%) and evaluating the ¢ integral, we get
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We substitute this result into Eq.(B.1) and obtain v (z, s) as
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Thus the Green’ s function written in terms of the s variable is
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This function is easily transformed back using Eq. (10) to get the propagator
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Therefore the wave function for this case is given by
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One can also find a closed analytic expression of the propagator for exponentially decaying strengths written in
terms of an infinite product [36].




