
Appendix A: Explicit derivation of the Propagator of Delta Potentials
for the Case: λ is constant

In this part we will show that if the strength of δ potential given in Eq. (13) is constant λ(t) = λ, it is possible to
obtain an explicit expression for the Green’s function or the propagator and therefore to get an explicit expression
for the wave function for all times t > 0. Since λ is constant, L{λ(t)ψ(0, t)} = λL{ψ(0, t)} = λψ̄(0, s). Using
this, we write Eq. (17) as
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Writing this equation for x = 0 and solving it for ψ̄(0, s), we get
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After inserting this expression back into the Eq.(A.1) we find
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The factor multiplying ψ(x′, 0) in the integral is Laplace transform of the Green’s function in time variable:
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By taking the inverse Laplace transform of this expression we get
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where we have used the integral representation erfc[−b/(2
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′2
. Note that the initial value problem is expressed at time t = 0, but the wave

function can be given at any initial time t = t0 and all the expressions in t is replaced by t − t0. Another
common notation for Green’s function is G(x, t;x′, t0). Hence, we obtain

ψ(x, t) =
∫ ∞
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(A.6)

This result is consistent with the ones obtained by different methods [24,25,36].

Appendix B: Explicit derivation of the Propagator of Delta Potentials
for the Case: λ(t) = α/t

We review the explicit propagator derivation of Dirac delta potential for strengths with inversely proportional
in time originally given in [36]. The general expression (9) for the Laplace transform of the wave function in
this particular case λ(t) = α

t , where α is a constant, becomes
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∫ ∞
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. (B.1)

1



Note that

L
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}
=
∫ ∞
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Using this result and choosing x = 0 in Eq. (B.1) we get
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If we define
u(s) =

∫ ∞
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ds′ ψ̄(0, s′) , (B.4)

the Eq.(B.1) turns out to be
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Since ψ̄(0, s) = −du(s)
ds , the above expression yields
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The solution of this first order differential equation gives
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∫ ∞
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By taking the derivative under the integral sign, we get
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Using the Eq. (10), we can write
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Inserting this expression for ψ(0, t) in the Laplace transform of α
t ψ(0, t) and evaluating the t integral, we get
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We substitute this result into Eq.(B.1) and obtain ψ̄(x, s) as
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Thus the Green’ s function written in terms of the s variable is
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This function is easily transformed back using Eq. (10) to get the propagator
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Therefore the wave function for this case is given by
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One can also find a closed analytic expression of the propagator for exponentially decaying strengths written in
terms of an infinite product [36].
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