

Supplementary Material

Supplementary Table 1. Summary of device performance parameters for state-of-the-art OLEDs using interfacial exciplex as host, including both thermal-evaporated OLEDs (e-OLEDs) and solution-processed OLEDs (s-OLEDs), respectively.

Туре	EML	Von/1000	L _{max} .	EQE _{max./1000}	PE max./1000	CIE	Def		
		[V]	[cd/m ²]	[%]	[lm/W]	[x,y]	Kei.		
e-OLED , in which e- FOLED , e-PhOLED and e-TADF OLED were classified by their used dopant, i.e. fluorescent, phosphorescent or TADF emitter, respectively.									
	TAPC:1%DBP/TmPyTz	2.18/-	520.3	10.1/-	17.8/-	0.62,0.38 [a]	[1]		
	TAPC:1%DBP/TAPC(3nm)	2.18/-	457.1	14.5/-	42.9/-	0.53,0.46	[1]		

e-FOLED	/ImPyIZ[0]					[a]		
	TAPC:1%DBP/mCP(3nm)/ TmPyTz [c]	2.18/-	2956.8	14.8/-	38.8/-	0.54,0.45 [a]	[1]	
	TCTA/rubrene(0.2nm)/TP Bi	3.1/-	18310	-/-	12.7/-	[d]	[2]	
	CBP:6 mol.% Ir(ppy) ₃ /B3PYMPM	-/-	-	20.1/-	-/-	[e]	[3]	
e- PhOLED	TAPC/BTPC:11 wt.% FIrpic	2.5/3.4	-	-/17.2	-/33.8	[f]	[4]	
	TCTA/CzTrz: 3% PO-01[i]	_/_	-	27.0/25.6[g]	73.1/52.1[g]	[h]	[5]	
	TAPC:o-DTPPC: 6 wt.% Ir(mphmq)2tmd	4.35	>15000	21.0/18.8[g]	18.0/12.6[g]	[j]	[6]	
	TAPC/Ir(ppy) ₂ (acac) (0.8nm)/TmPyPB [k]	5.76[1]/-	~ 40000	36.9/-	60.0/-	0.35,0.61	[7]	

	TCTA/(tbt) ₂ Ir(acac) (0.3 nm) /B3PYMPM	3.2/-	17400	19.5/12.0	53.1/-	[m]	[8]
e-TADF OLED	CBP: 5 wt.% 4CzIPN/B4PyPPM	2.33/	-	25.7/24.8	106.9/79.4	[n]	[9]
	CBP: 20 wt.% DACT- II/B4PyMPM	2.30	>10000	27.6/21.7	124.5/76.5	[0]	[10]

s-OLED, in which s-FOLED, s-PhOLED and s-TADF OLED were classified by their used dopant, i.e. fluorescent, phosphorescent or TADF emitter, respectively.

s-FOLED	-	-	-	-	-	-	-
s- PhOLED	m-MTDATA: 1 wt.% Ir(Flpy-CF ₃) ₃ /TmPyPB	2.36/3.0 3	43085	25.2/23.7	97.2/72.5	0.52,0.47	[11]
	m-MTDATA: 10 wt.% G0/TmPyPB	2.36/3.0 3	41539	18.1/17.8	81.1/62.5	0.35,0.59	[11]
	m-MTDATA: 5 wt.% Ir(TPAPQ)2(acac)/TmPyPB	2.36/3.4 2	17902	16.3/14.9	29.0/18.8	0.64,0.36	[11]
	m-MTDATA: 3 wt.% Ir(DPA-Flpy- CF3)2acac/TmPyPB	2.3/2.8	~ 10000	19.3/19.0[p]	44.5/36.2[p]	0.64,0.36	[12]
		[p]					
	m-MTDATA: 3 wt.% Ir(Flpy-CF ₃)2acac/TmPyPB	2.2/2.6	23005	23.7/-	80.4/-	0.56,0.43	[13]
		[p]					
s-TADF OLED	CBP: 5 wt.% 4CzIPN/B4PyMPM	2.5/4.7	-	16[p]/13	55/27	[n]	[14]
	TAPC:20 wt.% PAPTC/TmPyPB	2.50/-	26321	14.9/14.3	50.1/-	0.34,0.56	[15]
	DCzDCN:SimCP2(2:1):10 wt.% TXO-TPA/CDBP(3.5 nm)/B4PYPPM	-	-	10.02/-	20.71/-	0.32,0.34 [q]	[16]

Note:

[a]: at 1mA cm⁻². Because of incomplete energy transfer from TAPC/TmPzTz interfacial exciplex host to DBP, EL spectra of e-OLEDs were varied as increasing the driving voltage(or current density or luminance);

[b]: exciton formation region was dominantly formed at the TAPC/TmPyTz interface, followed by Förster energy transfer to DBP emitter throughout pure TAPC(3nm) layer;

[c]: actual exciplex host was long-range charge-transfer couple of TAPC and TmPyTz, in which mCP functioned as spacer;

[d]: EL spectra of OLEDs displayed the whole emission from rubrene emitter, in which λ_{EL} located at 561 nm;

- [e]: purely from the green Ir(ppy)₃ emitter;
- [f]: purely from the blue FIrpic emitter;
- [g]: at the luminance of 5000 cd/m²;
- [h]: purely from the orange PO-01 emitter;

[i]: in this work, device lifetime, efficiency and roll-off behaviors of PhOLEDs using interfacial or bulk exciplex host were systematically compared in parallel, confirming the superiorities of interfacial exciplex host in optimizing all of these critical device parameters;

- [j]: purely from the red Ir(mphmq)₂tmd emitter;
- [k]: interfacial exciplex couple was TAPC/TmPyPB, and the device was two-unit tandem PhOLED;
- [1]: at 0.2 mA/cm²;
- [m]: purely from the orange (tbt)₂Ir(acac) emitter;
- [n]: purely from the green 4CzIPN TADF emitter;
- [o]: purely from the green DACT-II TADF emitter;
- [p]: at a luminance of 100 cd/m^2 .

[q]: at a luminance of 500 cd/m². The EL spectra consisted of blue-orange complementary two colors for white emission, in which blue and orange component came from interfacial exciplex of CDBP/B4PYPPM (λ_{EL} : 445nm and TXO-TPA emitter (via partial Förster Energy transfer from the interfacial exciplex, i.e. λ_{EL} : 568 nm), respectively.

Reference:

- [1] B. B. Li, L. Gan, X. Y. Cai, X. L. Li, Z. H. Wang, K. Gao, D. C. Chen, Y. Cao, S. J. Su, *Adv. Mater. Interfaces* **2018**, *5*, 1800025.
- [2] X. Wang, R. Wang, D. L. Zhou, J. S. Yu, Synth. Met. 2016, 214, 50-55.
- [3] Y.-S. Park, W.-I. Jeong, J.-J. Kim, J. Appl. Phys. 2011, 110, 124519.
- [4] Y. Seino, H. Sasabe, Y.-J. Pu, J. Kido, Adv. Mater. 2014, 26, 1612-1616.
- [5] D. Zhang, M. Cai, Y. Zhang, Z. Bin, D. Zhang, L. Duan, *ACS Appl. Mater. Interfaces* **2016**, *8*, 3825-3832.
- [6] X. Song, D. Zhang, T. Huang, M. Cai, L. Duan, Sci. China-Chem. 2018, 61, 836-843.
- [7] T. Xu, J.-G. Zhou, C.-C. Huang, L. Zhang, M. K. Fung, I. Murtaza, H. Meng, L.-S. Liao, *ACS Appl. Mater. Interfaces* **2017**, *9*, 10955-10962.
- [8] Y. G. Qi, S. H. Hou, J. Li, H. Guo, J. S. Yu, J. Lumin. 2017, 192, 1242-1249.
- [9] Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, J. Kido, Adv. Mater. 2016, 28, 2638.
- [10] H. Sasabe, R. Sato, K. Suzuki, Y. Watanabe, C. Adachi, H. Kaji, J. Kido, Adv. Opt. Mater. 2018, 6, 1800376
- [11] S. Wang, X. Wang, B. Yao, B. Zhang, J. Ding, Z. Xie, L. Wang, Sci. Rep. 2015, 5, 12487.
- [12] X. Liu, B. Yao, Z. Zhang, X. Zhao, B. Zhang, W.-Y. Wong, Y. Cheng, Z. Xie, J. Mater. Chem. C 2016, 4, 5787.
- [13] X. Liu, B. Yao, H. Wang, B. Zhang, X. Lin, X. Zhao, Y. Cheng, Z. Xie, W.-Y. Wong, Org. Electron. 2018, 54, 197-203.
- [14] R. Komatsu, H. Sasabe, S. Inomata, Y.-J. Pu, J. Kido, Synth. Met. 2015, 202, 165-168.
- [15] X. Lin, Y. Zhu, B. Zhang, X. Zhao, B. Yao, Y. Cheng, Z. Li, Y. Qu, Z. Xie, ACS Appl. Mater. Interfaces 2018, 10, 47-52.
- [16] Y. W. Liu, X. F. Wei, Z. Y. Li, J. J. Liu, R. F. Wang, X. X. Hu, P. F. Wang, T. Qi, Y. Wang, Adv. Opt. Mater. 2018, 6, 1800978.