

Solving the inverse problem of electrocardiography on the endocardium using a single layer source

Alexander Kalinin^{1,*}, Danila Potyagaylo¹ and Vitaly Kalinin¹

¹EP Solutions SA, Yverdon-les-Bains, Switzerland

Correspondence*: EP Solutions SA, Av. des Sciences 13, Yverdon-les-Bains CH-1400, Switzerland alec.kalinin@gmail.com

APPENDIX A. DISCRETIZATION OF THE BOUNDARY INTEGRAL EQUATION

Let Ω be a domain in the space \mathbb{R}^3 bounded by a closed surface Γ_0 from the outside and a closed surface Γ_1 from the inside, see figure 1. For any harmonic function u(x) in the domain Ω we can write the boundary integral equation

$$c(P)u(P) + \int_{\Gamma_0 \cup \Gamma_1} u(Q) \frac{\partial G(P,Q)}{\partial n} d\Gamma_Q = \int_{\Gamma_0 \cup \Gamma_1} \frac{\partial u(Q)}{\partial n} G(P,Q) d\Gamma_Q, \tag{1}$$

where $P \in \Gamma_0 \cup \Gamma_1$ is an arbitrary fixed point on the domain boundary, $Q \in \Gamma_0 \cup \Gamma_1$ is a point of integration, c(P) is the solid angle, and $G(P,Q) = \frac{1}{|P-Q|}$ is the inverse distance between points P and Q.

Surfaces Γ_0 and Γ_1 are approximated by the triangular meshes $\tilde{\Gamma}_0(N_0, T_0)$ and $\tilde{\Gamma}_1(N_1, T_1)$ where N_0, N_1 are total number of the vertices V_i and T_0, T_1 are number of triangles τ_i (see figure 2).

Every triangle τ_i we call a "boundary element" and the joint mesh $\tilde{\Gamma}_0 \cup \tilde{\Gamma}_1$ is defined as

$$\Gamma_0 \cup \Gamma_1 = \tau_1 \cup \tau_2 \cup \dots \tau_{T_0} \cup \tau_{T_0+1} \cup \dots \cup \tau_{T_0+T_1}.$$
(2)

Now we introduce the set of linear continuous basis functions $\psi_i(x)$,

$$\psi_i(x) = \begin{cases} 1, & x = V_i, \\ 0, & x = V_j, j \neq i, \\ \text{linear in } \tau_k, V_i \in \tau_k, \end{cases}$$
(3)

where $i = 1, 2, ..., N_0, N_0 + 1, ..., N_0 + N_1$ (see figure 3).

Potential u(x) and its normal derivative are approximated by the series of basis functions $\psi_i(x)$

$$\tilde{u}(x) \approx \sum_{i=1}^{N_0+N_1} a_i \psi_i(x), \quad x \in \tilde{\Gamma}_0 \cup \tilde{\Gamma}_1$$
(4)

$$\frac{\partial \tilde{u}(x)}{\partial n} \approx \sum_{i=1}^{N_0 + N_1} b_i \psi_i(x), \quad x \in \tilde{\Gamma}_0 \cup \tilde{\Gamma}_1.$$
(5)

1

Substituting (4) and (5) in (1), we get the discrete version of the boundary integral equation

$$c(V_i)a_i + \sum_{i=1}^{N_0+N_1} a_i \int_{\tilde{\Gamma}_0 \cup \tilde{\Gamma}_1} \psi_i(Q) \frac{\partial G(V_i, Q)}{\partial n} d\Gamma_Q = \sum_{i=1}^{N_0+N_1} b_i \int_{\tilde{\Gamma}_0 \cup \tilde{\Gamma}_1} \psi_i(Q) G(V_i, Q) d\Gamma_Q$$
(6)

and after integration of products of the known basis functions $\psi_i(Q)$ by known inverse distance function $G(V_i, Q)$ and its normal derivative $\frac{\partial G(V_i, Q)}{\partial n}$ we get a system of linear equations

$$\begin{bmatrix} h_{1,1} & \dots & h_{1,N_{0}} & h_{1,N_{0}+1} & \dots & h_{1,N_{0}+N_{1}} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ h_{N_{0},1} & \dots & h_{N_{0},N_{0}} & h_{N_{0},N_{0}+1} & \dots & h_{N_{0},N_{0}+N_{1}} \\ h_{N_{0}+1,1} & \dots & h_{N_{0}+1,N_{0}} & h_{N_{0}+1,N_{0}+1} & \dots & h_{N_{0}+1,N_{0}+N_{1}} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ h_{N_{0}+N_{1},1} & \dots & h_{N_{0}+N_{1},N_{0}} & h_{N_{0}+N_{1},N_{0}+1} & \dots & h_{N_{0}+N_{1},N_{0}+N_{1}} \end{bmatrix} \begin{bmatrix} a_{1} \\ \dots \\ a_{N_{0}} \\ a_{N_{0}+1} \\ \dots \\ a_{N_{0}+N_{1}} \end{bmatrix} = \\ = \begin{bmatrix} g_{1,1} & \dots & g_{1,N_{0}} & g_{1,N_{0}+1} & \dots & g_{1,N_{0}+N_{1}} \\ \dots & \dots & \dots & \dots & \dots \\ g_{N_{0},1} & \dots & g_{N_{0},N_{0}} & g_{N_{0},N_{0}+1} & \dots & g_{N_{0},N_{0}+N_{1}} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ g_{N_{0}+1,1} & \dots & g_{N_{0}+1,N_{0}} & g_{N_{0}+1,N_{0}+1} & \dots & g_{N_{0}+1,N_{0}+N_{1}} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ g_{N_{0}+N_{1},1} & \dots & g_{N_{0}+N_{1},N_{0}} & g_{N_{0}+N_{1},N_{0}+1} & \dots & g_{N_{0}+N_{1},N_{0}+N_{1}} \end{bmatrix} \begin{bmatrix} b_{1} \\ \dots \\ b_{N_{0}} \\ b_{N_{0}+1} \\ \dots \\ b_{N_{0}+N_{1}} \end{bmatrix}$$
(7)

where

$$g_{i,j} = \sum_{l} \int_{\tau_l} \psi_j(Q) G(V_i, Q) \, d\tau_Q, \quad l = \{l : V_j \in \tau_l\},\tag{8}$$

$$h_{i,j} = c(V_i) + \sum_{l} \int_{\tau_l} \psi_j(Q) \frac{\partial G(V_i, Q)}{\partial n} d\tau_Q, \quad l = \{l : V_j \in \tau_l\}.$$
(9)

For computation of the integrals in (8) and (9) we use approach described in the papers (Dunavant, 1985; Davey and Hinduja, 1989).

We can write the system of linear equation (7) in a block matrix form

$$\begin{bmatrix} H_{00} & H_{01} \\ H_{10} & H_{11} \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \end{bmatrix} = \begin{bmatrix} G_{00} & G_{10} \\ G_{10} & G_{11} \end{bmatrix} \begin{bmatrix} 0 \\ q_1 \end{bmatrix}$$
(10)

where $u_0 = [a_1, \ldots, a_{N_0}]$ values of the potential u(x) and $q_0 = [b_1, \ldots, b_{N_0}] = 0$ values of the potential normal derivative $\frac{\partial u(x)}{\partial n}$ in the vertices of the mesh $\tilde{\Gamma}_0$; $u_1 = [a_{N_0+1}, \ldots, a_{N_0+N_1}]$ values of the potential u(x) and $q_1 = [b_{N_0+1}, \ldots, b_{N_0+N_1}]$ values of the potential normal derivative $\frac{\partial u(x)}{\partial n}$ in the ventricles of the mesh $\tilde{\Gamma}_1$.

Also we can write system of linear equation (7) as a system of block matrix equation

$$H_{00}u_0 + H_{01}u_1 = G_{01}q_1$$

$$H_{10}u_0 + H_{11}u_1 = G_{11}q_1$$
(11)

Matrices G_{ij} and H_{ij} have clear physical interpretations. Matrices G_{ij} are the discrete form of the electric single layer integral operator with the sources located on the surface *i* generating potential on the field surface *j*. Matrices H_{ij} are the discrete form of the electrical double layer integral operator with the sources located on the surface *i* generating electrical potential on the field surface *j*.

Figure 1. Schematic geometric relationships of the inverse potential problem in the internal statement. Ω is the passive volume conductor domain, Ω_M is the myocardial domain, Γ_0 is the body surface, Γ_1 is the myocardial surface (endo- and epicardial surface), \vec{n} its unit normal vector directed inward, P_i , $i = 1..N_0 + N_1$ are collocation points used in direct boundary element method, N_0 is the number of collocation points on the Γ_0 , N_1 is the number of collocation points on Γ_1 .

Figure 2. Part of the mesh $\hat{\Gamma}_0$

Figure 3. Basis functions on the mesh. (A) is continuous linear basis functions ψ , (B) is linear approximation in the triangle.