Supplementary Material

No silver bullet - Canonical Poly(ADP-Ribose) Polymerases (PARPs) are no universal factors of abiotic and biotic stress responses of *Arabidopsis thaliana*

Dagmar Rissel, Peter P. Heym, Kathrin Thor, Wolfgang Brandt, Ludger A. Wessjohann and Edgar Peiter*

* Correspondence: Edgar Peiter: edgar.peiter@landw.uni-halle.de

Supplementary Presentations. Zip archive containing pdb files of protein models shown in Figure 10. (AtRCD1_3AB.pdb; AtRCD1_4ANI.pdb; AtRCD1_PHE.pdb; AtSRO1_3AB.pdb; AtSRO1_4ANI.pdb; AtSRO1_PHE.pdb)

Reference	At2g31320	At4g02390
this work	PARP1	PARP2
Zhang et al. (2015)	PARP1	ΡΔΡΡ2
Sci. Rep. 5:15892		171Kl 2
Pham et al. (2015)	PARP2	PARP1
Plant Mol. Biol., 89: 319-338	17102	
Song et al. (2015)	PARP1	PARP2
PLOS Genet. 11: e1005200		
Feng et al. (2015)	PARP1	PARP2
PLOS Genet. 11: e1004936	171001	
Boltz et al. (2014)	PARP2	PARP1
PLOS ONE 9: e88872	17102	
Jia et al. (2013)	PARP1	PARP2
Plant Mol. Biol. 82: 339-351	1711011	1111Cl 2
Schulz et al. (2012)	PARP2	PARP1
PLOS ONE 7: e37287	1711012	
Lamb et al. (2012)	PARP2	PARP1
Cell Mol. Life Sci. 69: 175-189	111112	
Briggs and Bent (2011)	PARP2	PARP1
Trends Plant Sci. 16: 372-380		
Pellny et al. (2009)	PARP1	PARP2
Mol. Plant 2: 442-456		
Ogawa et al. (2009)	PARP1	PARP2
Plant J. 57: 289-301	171001	17110 2
Vanderauwera et al. (2007)	PARP2	PARP1
PNAS 104: 15150-15155		
De Block et al. (2005)	PARP2	PARP1
Plant J. 41: 95-106	171112	
Doucet-Chabeaud et al. (2001)	PARP1 PARP2	
Mol. Genet. Genom. 265: 954-963		

Supplementary Table 1. The nomenclature of *Arabidopsis thaliana PARP1* and *PARP2* has been inconsistent in the literature.

PARP1 (At2g31320)				
Mutant	Collection	previously published as		
parp1-1	GABI_380E06	parp2 [1]; parp1-1 [7]		
parp1-2	GABI_382F01	<i>parp1-2</i> [7]		
parp1-3	GABI_692A05	atparp1 [2]; parp1 [3]; parp1 [8]		
parp1-4	SALK_145153	<i>parp2</i> [6]		
parp1-5	SALK_111410	<i>parp-2</i> [4]		
parp1-6	SALK_109413			
parp1-7	SALK_141560			
PARP2 (At4g02390)				

Supplementary Table 2. A unified nomenclature of Arabidopsis *parp* mutants.

PARP2 (At4g02390)			
Mutant	Collection	previously published as	
parp2-1	GABI_420G03	parp2-1 [7]	
parp2-2	SAIL_1250_B03	<i>parp-3</i> [4]	
parp2-3	SALK_140400	parp1 [1]; atparp2 [2]; parp2 [3]; parp2 [8]	
parp2-4	SALK_097261	<i>parp1</i> [6]	
parp2-5	SAIL_683_F10		
PARP3 (At5g22470)			
Mutant	Collection	previously published as	
parp3-1	SALK_108092	parp3-1 [5]; parp3 [6]; parp3 [8]	
parp3-2	SAIL_632_D07	<i>parp-1</i> [4]	

[1] Boltz et al. (2014), PLOS ONE, 9: e88872

[2] Feng et al. (2015), PLOS Genet. 11(1): e1004936

[3] Jia et al. (2013), Plant Mol. Biol. 82: 339-351

[4] Pham et al. (2015), Plant Mol. Biol. 89: 319-338

[5] Rissel et al. (2014), Plant Biol. 16: 1058-1064

[6] Schulz et al. (2012), PLOS ONE 7: e37287

[7] Song et al. (2015), PLOS Genet. 11: e1005200

[8] Zhang et al. (2015), Sci. Rep. 5:15892

PCR screening and RT- PCR	<i>parp1-1</i> _for	ACTCCTCAAGGAGTGAAAGGC
	parp1-1_rev	ATCTCGAACTCCATCATTGC
	parp1-2_for	TGGAGCAAATGTTCTCATTCC
	parp1-2_rev	GATGCTTACAATGTCCAACGG
	<i>parp1-3</i> _for	TTGAGGCATTGACGGAGATAC
	parp1-3_rev	TTTCTCCCAATGCAACTTCAC
	GABI_8409	ATATTGACCATCATACTCATTGC
gene expression	PARP1_rt_for	GAAATACTAAGGAAAGGCAACCAT
	PARP1_rt_rev	TGTCAGTCCACAAACAACCAAA
PCR screening and RT- PCR	<i>parp2-1_</i> for	AGAACACTCATGCAAAGACGC
	parp2-1_rev	ACGCATCTTGATTTGTTCCAC
	parp2-2_for	AGAACACTCATGCAAAGACGC
	parp2-2_rev	AAGTGGAACAACAACACCGTC
	GABI_8409	ATATTGACCATCATACTCATTGC
	SAIL_LB1_short	CAGAAATGGATAAATAGCCTTGCTTC
	SAIL_LB3_short	GCATCTGAATTTCATAACCAATC
gene expression	PARP2_rt_for	GGCAAGATAAGCAAGTCCACA
	PARP2_rt_rev	ACTCAGTTCCTCAAGCCTCGT
reference genes	ACT2_rt_for	TCCCTCAGCACATTCCAGCAGAT
	ACT2_rt_rev	AACGATTCCTGGACCTGCCTCATC
	UBQ10_rt_for	CACACTCCACTTGGTCTTGCGT
	UBQ10_rt_rev	TGGTCTTTCCGGTGAGAGTCTTCA

Supplementary Table 3. Primers used in this work.

Supplementary Figure 1. Additional T-DNA insertion lines identified for *PARP1* **and** *PARP2.* Model of the genomic regions and the T-DNA insertions of *PARP1* (A) and *PARP2* (B). Coding regions are presented by white boxes, introns are shown by a line. Triangles indicate the sites of T-DNA insertion. The insertion lines originated from the SALK and the SAIL collections. The numbers indicate the last nucleotide before and the first nucleotide after the insertion, counting from the start codon. LB and RB indicate the left and right border of the T-DNA, as determined by sequencing.

Supplementary Figure 2. Stomatal conductance is not altered in *parp* **mutant plants compared to the wild type.** Transpiration during desiccation was determined by porometry on leaves 10, 11, and 12. After 6 days plants were re-watered with 20 mL water. Data represent the means ±SE of 3-4 plants per line.

Supplementary Figure 3. Growth of *parp* mutant plants subjected to oxidative stress is not altered compared to the wild type. Root growth (large panels) of Col-0 and *parp* mutants on control plates (circles) or on plates containing 0.5 mM H_2O_2 (triangles). Shoot fresh weight was determined at the end of the experiment (small panels). The H_2O_2 treatment was contained in the experiment displayed in Figure 4. Control values shown in Figure 4 are included for comparison. Data represent the means ±SE of 15 plants per line.

Supplementary Figure 4. Growth of *parp1-1 parp2-1 parp3-1* mutant plants subjected to oxidative stress is not altered compared to the wild type. Root growth (large panel) of Col-0 and *parp1-1 parp2-1 parp3-1* mutants on control plates (circles) or on plates containing 0.5 mM H₂O₂ (triangles). Shoot fresh weight was determined at the end of the experiment (small panel). The H₂O₂ treatment was contained in the experiment displayed in Figure 7. Control values shown in Figure 7 are included for comparison. Data represent the means \pm SE of 15 plants per line.

Supplementary Figure 5. Stomatal conductance is not altered in *parp1-1 parp2-1 parp3-1* **mutant plants compared to the wild type.** Transpiration during desiccation was determined by porometry on leaves 10, 11, and 12. After 7 days plants were re-watered with 20 mL water. Data represent the means ±SE of 3 plants per line.

Supplementary Figure 6. Schematic representation of domains in animal and plant PARP proteins. Domains were defined according to Pfam 27.0 and are displayed as colored boxes. ExPASy Prosite indicated the existence of PARPcat domains also in SRO2 and SRO4, which are absent in the Pfam analysis.