

Soft tap water urgently needed for reducing risks of kidney stones at rural villages in Yangxin, a poverty alleviated county in central China

Jiaxin Zhao¹, Mingyao Wang¹, Tan Jiang¹, Fangsi Wang¹, Xinyue Shi², Yun Zhang¹, Kun Xu^{1*}

¹ College of Life Sciences, Hubei Normal University, 11 Cihu Road, Huangshi, Hubei, China

² Center for Public Employment and Entrepreneurship Guidance and Information Service, Department of Human Resources and Social Security of Hubei Province, 10 Shuiguohu Road, Wuhan, Hubei, China

* Correspondence: Kun Xu kunxu1@hbnu.edu.cn

Supplementary Material

1 Supplementary Figures and Tables

1.1 Supplementary Figures

Supplementary Figure 1. Receiver Operating Characteristic (ROC) curve of the estimated logistic regression model with an area under curve (AUC) of 0.855.

Supplementary Material

Supplementary Figure 2. Partial dependence of prevalence of kidney stones (prob) on (a) age (year), (b) body mass index (BMI) (kg/m²), (c) total hardness of drinking water (mg/L CaCO₃), and (d) tap water availability based on the random forest regression marginalizing over other variables. Solid line was the mean estimated probability at the rolling window of 3 adjacent estimates (black dots).

1.2 Supplementary Tables

Supplementary Table 3. Questions answered by householders during family visits regarding demographic (1-6), economic (7), and urinary health (8) conditions, water availability (9-15), and perspectives on water safety (16-17) and government support (18-22).

No	Question	Answer Format (Unit)	
1	Your name?	Text	
2	Your gender?	Female/Male	
3	Your age?	Integer (year)	
4	Your height?	Numeric (m)	
5	Your weight?	Numeric (kg)	
6	Number of adults in your family?	Integer	
7	Annual household income?	Numeric (CNY)	
8	Are you diagnosed with kidney stones at hospital?	No/Yes	
9	Is there a well in your family yard?	No/Yes	
10	Is there a filter installed to the well pump?	No/Yes	
		(Blank if No to Question 9)	
11	Is tap water available in your family?	No/Yes	
12	How many days in the last 3 months was tap water	Numeric (day)	
	available for?	(0 if No to Question 11)	
13	Is there a filter installed at the kitchen faucet?	No/Yes	
14	How much did your family pay for water last year?	Numeric (CNY)	
15	Your primary source of drinking water?	Well/Filtered Well/Tap/Filtered	
		Tap/Bottle Water	
16	Are you aware of any water issues in the recent 3 years?	No/Yes	
17	Have you noticed deterioration of water quality during	No/Yes	
	the past 3 years?		
18	Are you willing to accept compensation from	No/Yes	
	government regarding water problems?		
19	How much are your family willing to accept each year?	Numeric (CNY)	
		(Blank if No to Question 18)	
20	Are you confident in government regarding	No/Yes	
	compensation for water problems?		
21	Do you hope government to treat water problems?	No/Yes	
22	Are you willing to pay government for water treatment?	No/Yes	

Supplementary Table 2. Performance of the logistic regression model built on a reduced size of survey data. Simulation for dropping 10% of responses at each village was conducted for 1000 times. Estimated coefficients and p value of each coefficient were summarized.

Variable	Mean Estimated	Difference from the	Number of times with
	coefficient	fitted model (Table 4)	p value < 0.05
(Intercept)	-8.21	0.04	1000
Gender	1.34	-0.01	923
Age	8.92×10^{-2}	$-0.09 imes 10^{-2}$	1000
BMI ²	4.47×10^{-3}	$0.03 imes 10^{-3}$	574
Total hardness of	9.64×10^{-3}	$0.07 imes 10^{-3}$	997
drinking water			
Tap water availability	-2.23	0.02	719

1.3 Supplementary R Codes

```
library(MASS)
library(pROC)
library(randomForest)
library(ggplot2)
library(pdp)
Water<-read.csv("./Water.csv") #. is the directory path</pre>
#Building a full logistic regression model
binomial1<-
glm(Self Stones~Drinking tws+CaMg Ratio+Softening Depth+Tap Availab
ility+Fee Clean YR+Gender M+BMI+BMI2+Family Income+percapita Income
+Aware Water Issue+Willingness To Accept+Willingness To Pay+Hope Go
v Treat+Confidence Gov, data=Water, family=binomial(link="logit"))
#stepwise selection based on AIC
binomial2<-stepAIC(binomial1)</pre>
summary(binomial2)
#This leads to Table 4
rr<-roc(Water$Self Stones, predict(binomial2))</pre>
#AUC of the ROC of the logistic regression model
rr$auc
#plotting the ROC curve
plot(roc(Water$Self Stones, predict(binomial2)))
```

#Uncertainty Analysis by randomly dropping 10% of residents at each

```
village by 1000 times of iteration
coef 1000<-matrix(nrow=6, ncol=1000)</pre>
p 1000<-matrix(nrow=6, ncol=1000)</pre>
for(i in 1:1000)
{
set.seed(i)
Water Drop 10<-c(sample(21,2), sample(42,4)+21, sample(24,2)+63,
sample(27, 3) + 87)
Water Drop 10 Data<-Water[-Water Drop 10,]
glm Drop 10<-
glm(Self Stones~Gender M+Age YR+I(BMI^2)+Drinking tws+Tap Availabil
ity, Water Drop 10 Data, family=binomial(link="logit"))
coef 1000[,i]<-summary(glm Drop 10)$coefficients[,1]</pre>
p 1000[,i]<-summary(glm Drop 10)$coefficients[,4]</pre>
#mean estimated coefficients from 1000 times of iteration of random
dropping 10% samples
apply(coef 1000,1,mean)
#significance of each variable by 1000 times of iteration
apply(p 1000<0.05,1,sum)
#Random forest regression model for the binary response
Water$Stones<-as.factor(Water$Self Stones)</pre>
set.seed(691)
RF<-randomForest(Stones ~ Gender M + Age YR + BMI + Drinking tws +
Tap Availability, data = Water, ntree = 300)
#variance importance plot
varImpPlot(RF)
#partial dependence on gender
partial(RF, pred.var="Gender M")
#plotting partial dependence on each continuous explanatory
variable
autoplot(partial(RF, pred.var="Age YR"))+theme bw()
autoplot(partial(RF, pred.var="BMI"))+theme bw()
```

autoplot(partial(RF, pred.var="Drinking tws"))+theme bw()

autoplot(partial(RF, pred.var="Tap_Availability"))+theme_bw()

#plotting partial dependence on the combination of two continuous
variables
autoplot(partial(RF, pred.var=c("Age YR", "BMI")))+theme bw()

autoplot(partial(RF, pred.var=c("Drinking_tws", "Tap_Availability")))+theme_bw()