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Appendix A: Overview of Mori-Zwanzig formalism

The idea behind the Mori-Zwanzig formalism is to ob-
tain the time-evolution of the resolved variables in the
system, which represents only a subset of the total vari-
ables. Let us consider, as an example, the following linear
system,

x = Ax,

(A1)

where the variables are separated into a resolved X;ev ,

and an unresolved part Xunr as, X = (Xyes ; Xunr) | , Stich
that,
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One can then write the unresolved part as,
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where xum)]r denotes the initial condition. Then, to obtain
the time-evolution of the resolved variables, one can plug

Eq. (A3) into the first row of Eq. (A2]), such that,

+ /t K(t - t/)xres (t/)dt/ ?
’ (A4)

kres(t) = Allxres(t) + f(t)

where f(t) = A126A22tx$31)r and K(t — /) =
AjpeA22(t=t) Ayl Tn the situation considered in the
main text, the memory kernel K (¢t — t') can be written
down explicitly. Moreover, using the timescale separa-
tion, one can also calculate the integral. A good intro-
duction is given in [I] .

Appendix B: Convergence to a Dirac-J distribution

To obtain Eq. (7) from Eq. (6), we let ¢ — 0. Doing
so, a Dirac-d appears in Eq. (6) as,
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where ¢ > 0 and we used an integration by parts in the
first equality and the dominated convergence theorem.
Using this equality, one recovers the result of Eq. (7).

Appendix C: Details to obtain Eq. (10)

One can calculate the long-time limit of the variance of
the deviations x; from the synchronized state using the
part of Eq. (9) that is orthogonal to u; . One then has,
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The two-point correlator of the noise satis-

fies (§(t1)&k(t2)) = mpdjrexp(—|t1 — tof/7s) +
18 srIz5Irsljkexp(—|t — tof/77).  Using the
latter relation and after some algebra, one obtains the
variance in the slow component Eq. (10).

Appendix D: No timescale separation

One can also calculate the variance of the oscillators
belonging to S (and also F) when there is no timescale
separation. Assuming as previously that the oscillators
in § and F are subject to noises with correlation times
Ts and TF respectively, and that the standard deviations
are homogeneous, one has,
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for i = 1,..., N, where q, are the eigenvectors of the
Jacobian Eq. (5), with corresponding eigenvalues 7, .
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