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1 INVARIANCE OF POSITIVE ORTHANT

THEOREM 1. Let T (t), the tumor cell count, be bounded by the carrying capacity, 0 ≤ T (t) ≤ k for all
t. Then, trajectories of model equations (1) remain in the positive orthant R3

+ for all time, i.e. the region is
invariant.

PROOF. Assume that the model begins with positive initial conditions (all parameters are positive):

M(0) > 0, T (0) > 0, E(0) > 0.

We use some elementary considerations.

• M(t) > 0 for all t ∈ [0,+∞] if M(0) > 0.
Given that the initial condition is M(0) we get the following:

dM

dt
= −µ1M +m

dM

dt
= −µ1

(
M − m

µ1

)
We divide by

(
M − m

µ1

)
which is nonzero ( otherwise, we get the solution M(t) =M(0) > 0 for all

t ∈ [0,+∞], and the proof is complete for this case), to solve:

dM
dt

M − m
µ1

= −µ1∫
dM

M − m
µ1

= −µ1
∫

dt

log

(
M − m

µ1

)
= −µ1t+ c

M − m

µ1
= ce−µ1t

Then,
M(t) = ce−µ1t +

m

µ1

Determining the constant c by substituting t = 0 in M(t) we get:

M(0) = c+
m

µ1
⇒ c =M(0)− m

µ1
⇒M(t) =

m

µ1

(
1− e−µ1t

)
+M(0)e−µ1t.

The general solution of the MMC equation (1a) is given by: M(t) = m
µ1

(
1− e−µ1t

)
+M(0)e−µ1t.

Since e−µ1t ≤ 1 for all t ∈ [0,+∞], then
(
1− e−µ1t

)
≥ 0. As m,µ1 are positive, we get that the first
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term in the solution is non-negative. For the second term, non-negativity follows from e−µ1t > 1 and
M(0) > 0. Therefore, M(t) > 0 for all t ∈ [0,+∞] given that M(0) > 0.

• T (t) > 0 for all t ∈ [0,+∞] if T (0) > 0.

From 0 ≤ T ≤ k it follow that rT
(
1− T

k

)
≥ 0. Then, dT

dt ≥ −T
(

p1M
M+a + p2E

)
. Hence, T is more

than or equal to the solution of dT
dt = −T

(
p1M
M+a + p2E

)
. Let T (0) = T0. Then,

T (t) ≥ T0 exp

(
−
∫ t

0

[
p1M

M + a
+ p2E

]
dt

)
> 0 for all t ∈ [0,+∞] if T0 > 0

• Similar to the proof for T , we prove E(t) > 0 for all t ∈ [0,+∞] if E(0) > 0.
Given that M(t), T (t) are nonnegative for all t ∈ [0,+∞] and that d0, γ, p1, a are positive parameters,
we get d0 + γ p1TM

M+a ≥ 0. Then dE
dt ≥ −E (p3T + µ2). Hence, E(t) is more than or equal to the

solution of dE
dt = −E (p3T + µ2). Let E(0) = E0. Then,

E(t) ≥ E0 exp

(
−
∫ t

0
[p3T + µ2] dt

)
> 0 for all t ∈ [0,+∞] if E0 > 0

Thus, the positive orthant R3
+ is invariant and for all t: M(t) > 0, T (t) > 0, E(t) > 0.

This property is used for stability analysis.

2 INITIAL CONDITIONS

Table S1. List of initial conditions for the model.

Initial condition Value Source
M(0) 0 Assumption
T (0) 0 Bunimovich-Mendrazitsky et al. (2007)
E(0)

[
0, 1.36× 107

]
cells Calculation from sources below,

Bunimovich-Mendrazitsky et al. (2011)

We choose the following initial conditions (summarized in Table S1):

• MMC, M(0):
We assumed that the drug is given only via the input parameter m, i.e., M(0) = 0.

• Tumor cells, T (0):
The carrying capacity of tumor cells, k, was estimation is 1× 109[cells]. Therefore, we take T (0) ∈
[0, 109].

• Effector cells, E(0):
In Bowyer et al. (2022), a rough estimation indicated that DCs subsets constituted approximately 20%
of the bladder immune cells. An analysis estimate for the total count of immune cells in the bladder is
approximately 109 (Sender et al., 2023). We make the simplifying assumption that the ratio between
bladder tumor weight and total bladder weight is proportional to the ratio between their respective cell
counts. Using this assumption, we derive the following formula to obtain a rough estimate of E(0):
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# DCs = #( total number of bladder immune cells )× bladder tumor weight
bladder weight

× fraction of DCs

(S1)
Considering the median tumor resection weight reported as 1.4g (Hald et al., 2023) and 2g (Fernández-
Conejo et al., 2020), with the overall estimated weight falling within the range of (29.3− 42)g, we
derive the highest theoretical value for initial effector cell counts:

E(0) = 109 × 2

29.3
× 0.2 = 1.36× 107,

Therefore E(0) ∈
[
0, 1.36× 107

] .

The specific values of initial conditions and parameters for all model simulations are stated below in
Table S2.

Table S2. List of the model initial conditions and parameters. Here ε is a perturbation, ε = 10.

Initial condition Parameters set
(M(0), T (0), E(0))

Figure 2(a)
(
0, 4× 106, d0/µ2

)
p1 = 0.17, r = 0.032

Figure 2(b)
(
0, 1× 107, d0/µ2

)
p1 = 0.17, r = 0.032

Figure 2(c)
(
0, 8× 107, d0/µ2

)
p1 = 0.17, r = 0.032

Figure 3
(
0, 1× 108, d0/µ2

)
p1 = 0.17, r = 0.032

Figure 5 The algorithm exclusively utilizes parameters p1 = 0.17, r = 0.032

Figure S1 (ε∗, ε∗, d0/µ2 + ε∗) . r = 0.01, p2 = 5× 10−6

Figure S2
(
ε∗, 1.066× 107 + ε∗, 3957.338 + ε∗

)
r = 0.02, p2 = 5× 10−6

Figure S3
(
ε∗, 9.835× 108 + ε∗, 65.605 + ε∗

)
r = 0.02, p2 = 5× 10−6

Figure S4 (m/µ1 + ε, 0 + ε, d0/µ2 + ε) r = 0.02, p2 = 5× 10−6

Figure S5
(
0, 1× 108, d0/µ2

)
p1 = 0.12, p2 = 0.37× 10−5,
p3 = 1.59× 10−6, d0 = 8.256× 104,
r = 0.045

Figure S6(a) Multiple-found in text p1 = 0.17, r = 0.032
Figure S6(b) Multiple-found in text p1 = 0.17, r = 0.032
Figure S6(c) Multiple-found in text p1 = 0.17, r = 0.032
Figure S7 Multiple-found in text p1 = 0.12, r = 0.032
Figure S8 Multiple-found in text p1 = 0.12, r = 0.032
Figure S9

(
0, 1× 108, d0/µ2

)
p1 = 0.17, r = 0.032
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3 STABILITY ANALYSIS FOR THE MODEL

3.1 Steady states derivation

The equilibria of the model are found by setting all derivatives to zero and solving for M∗, T ∗ and E∗,
with the star notation indicating the variables are at their equilibrium values. For convenience, disease-free
equilibrium points are assigned the indexing of EB, and cancer equilibrium points are assigned the
indexing of C. The model has multiple equilibria but, given the invariance of the positive orthant, we need
only focus on the nonnegative equilibria assuming all initial conditions are positive:

• dM
dt = −µ1M +m,

Here, the parameter m denotes two states of chemotherapy administration that are described separately
in two distinct case scenario later on:
1. m = 0 in the absence of chemotherapy instillation;
2. m > 0 for constant chemotherapy instillation.

Setting all derivatives to zero, we get the system:
−µ1M +m = 0,

−T
(

p1M
M+a + p2E

)
+ rT

(
1− T

k

)
= 0

d0 − E (p3T + µ2) + γ p1TM
M+a = 0.

(S2)

We’ll consider two cases using the solution of the first equation of (S2).

3.1.1 No treatment is given, i.e, m = 0, so M∗ = 0:

{
−p2TE + rT

(
1− T

k

)
= 0 =⇒ T ∗

1 = 0, T ∗
2 =

k

r
(r − p2E) ,

d0 − E (p3T + µ2) = 0.
(S3)

• For T∗
1 = 0:

d0 − µ2E = 0 =⇒ E∗ =
d0
µ2
. (S4)

Thus, the first equilibrium is: EB1 = (M∗, T ∗, E∗) =

(
0, 0,

d0
µ2

)
.

• For T∗
2 =

k
r (r− p2E) :

p2p3k

r
E2 + (−p3k − µ2)E + d0 = 0. (S5)

⇒ E∗
2,3 =

ρ±
√

ρ2−4ξd0
2ξ . where ρ = p3k + µ2, ξ = p2p3k

r . First, to get real solutions we demand
∆ ≥ 0, i.e., ρ2 − 4ξd0 ≥ 0, implying that ρ ≥ 2

√
d0ξ or ρ ≤ −2

√
d0ξ. Now since ρ = p3k + µ2 > 0

(parameters are positive), solution are real when ρ ≥ 2
√
d0ξ holds. From positivity of parameters√

ρ2 − 4ξd0 <
√
ρ2 = ρ., i.e., E2,3 is positive (assuming that the solutions are real). So, when

ρ > 2
√
d0ξ it follows that E2,3 ≥ 0, and we get two more equilibrium points:

C1,2 = (M∗, T ∗, E∗) =

(
0, k − p2k

r

(
ρ±

√
ρ2 − 4ξd0
2ξ

)
,
ρ±

√
ρ2 − 4ξd0
2ξ

)
.
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3.1.2 Treatment is given m > 0:



−µ1M +m = 0 =⇒M∗ = m
µ1
,

−T

(
p1

(
m
µ1

)
(

m
µ1

)
+a

+ p2E

)
+ rT

(
1− T

k

)
= 0,=⇒ T ∗ = 0, T ∗ = k − k

r

(
p1

(
m
µ1

)
(

m
µ1

)
+a

+ p2E

)
d0 − E (p3T + µ2) + γ

βp1T
(

m
µ1

)
(

m
µ1

)
+a

= 0.

(S6)

For the second equation in (S6) to be zero, we have two options:

• First case: T ∗ = 0:
d0 − µ2E = 0 (S7)

=⇒ E∗ =
d0
µ2

.

The corresponding equilibrium is: EB4 = (M∗, T ∗, E∗) =
(

m
µ1
, 0, d0µ2

)
.

• Second case: T ∗ = k − k
r

(
p1

(
m
µ1

)
(

m
µ1

)
+a

+ p2E

)
. Substitution in the third equation of (S6) :

d0 − E

p3
k − k

r

 p1

(
m
µ1

)
(

m
µ1

)
+ a

+ p2E

+ µ2

+ γβp1m

(
k − k

r

(
p1

(
m
µ1

)
(

m
µ1

)
+a

+ p2E

))
µ1

(
m
µ1

+ a
) = 0.

(S8)

⇒ E∗
2,3 =

−φ±
√
φ2 − 4ψω

2ψ

Where ψ = p2p3k
r , φ = −p3k−µ2+

p1p3k
(

m
µ1

)
r
((

m
µ1

)
+a

)− p1p2kmγβ

rµ1

((
m
µ1

)
+a

) , ω = d0+
p1kmγβ

µ1

((
m
µ1

)
+a

)− p21m
2γβk

rµ2
1

((
m
µ1

)
+a

)2

Accordingly, the substitution produces cumbersome calculations for this quadratic equation in
variable E. In the absence of a trivial biological interpretation for the parametric form of the equilibria,
we used Maplesoft to calculate them numerically after insertion of parameters and initial conditions
from Table 2 and Table S1 (expecting at most two points):

C3 = (M∗, T ∗, E∗) = (1365.463,−258033.024,−18361.260),

C4 = (M∗, T ∗, E∗) =
(
1365.463,−1.649× 1011, 641355.583

)
.

For C3 the number of tumor cells (T) and effector cells (E) is negative. Similarly, for C4, the number
tumor cells (T ) is negative. These are valid mathematical results, with no biological meaning. Hence,
we don’t examine.

Overall, in the absence of treatment, we obtained three equilibrium points in the model (system (S2)),
and in the presence of treatment, we obtained one equilibrium point from system (S6).
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Figure S1. Homeostasis equilibrium EB∗
1. Notice, that the scale for effector cells (E) was divided

into 104 for the possibility to show all curves in one graph. Tumor cells (black solid line) and MMC
dose (magenta solid line) decrease during the estimated period (up to 100 days), while effector cells
(blue solid line) remain constant starting from few hours after the disturbance, as they go to d0/µ2 =
1.032 × 105/9.12 = 11, 315.789 (which is 1.131 in this graph due to scaling). In this case scenario, the
individual will be eventually healthy.

3.2 Simulations of stability analysis

The behavior of urothelial tumor cells (T), effector cells (E) , and MMC dose (M) (black, blue, and
magenta solid curves, respectively) for each equilibrium point is depicted; in Figures S1 and S4 for the
disease-free equilibrium points EB1,2, and in Figures S2 and S3 for the cancer equilibrium points C1,2,
respectively. To display all curves in each graph, we used scaling (see Table S1).

We present the following investigation of C1,2:

C1,2 =

(
0, k − p2k

r

(
ρ±

√
ρ2 − 4ξd0
2ξ

)
,
ρ±

√
ρ2 − 4ξd0
2ξ

)
, where ρ = p3k + µ2, ξ =

p2p3k

r

The points here corresponds to a state where the tumor and immune cells are both present (non-negativity
condition for their values is provided in the Supplementary Information). The process of finding stability
criteria forC1,2 involves cumbersome calculations. In the absence of a trivial biological interpretation for the
parametric form of the equilibria, the complexity of these stability conditions may hinder a straightforward
interpretation of the system’s behavior. Therefore, we used substitution of parameters to determine stability:
- C1 = (M∗, T ∗, E∗) =

(
0, 1.066× 107, 3957.338

)
, which is the ”small” tumor equilibrium, with Jacobian

So we get λ̄ = [−21.049,−26.09, 0.012]. Therefore, the fixed point obtained by insertion it into Jacobian
is not stable (see Figure S2). - The other solution is the ”large” tumor equilibrium: C2 = (M∗, T ∗, E∗) =(
0, 9.835× 108, 65.605

)
. From the obtained eigenvalues λ̄ =

[
−21.050,−1573.042,−1.928× 10−2

]
, it

follows that EB3 is locally asymptotically stable, as all eigenvalues are negative (see Figure S3).
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Figure S2. The small tumor equilibrium C∗
1. Notice, that the scale for tumor cells (T ) was divided

into 106, and for effector cells (E) by 103, for the possibility to show all curves in one graph. We can see
that tumor cells (black solid line) and MMC dose (magenta solid line) decrease during all estimated time.
Effector cells (blue solid line) fluctuate during first day and then increase during all estimated time (up to
100 days). Hence, we see that the variables are changing in time and eventually diverge from the small
tumor equilibrium (not stable at all).

Figure S3. The large tumor equilibrium C∗
2. Notice, that the scale for tumor cells (black solid line)

was divided into 108 and effector cells (blue solid line) by 103, for the possibility to show all curves in
one graph, starting from the zoom graph (note that during the first day both effector cells and drug dosage
decline drasically). We can see that during the first hours, both effector cells and MMC decline drastically.
In less than one day, all variables stay unchanged during almost all estimated time (up to 100 days), i.e., a
large tumor persistence.
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Figure S4. Tumor-free equilibrium EB∗
2. Notice, that the scale for effector cells (E) was divided into

103 for the possibility to show all curves in one graph. We can see that after 100 days tumor cells (black
solid line) declines to zero while effector cells (blue solid line) and MMC dose (magenta solid line) stay
stable with no change during all estimated time (up to 150 days). We chose parameters so that they satisfy
the stability condition above.

4 EVALUATION OF CENTRAL MODEL ASSUMPTIONS

4.1 Rationale for constant effector cells production

One aspect of the model’s structure involves the assumption of constant effector cell production, dictated
by the constant parameter d0. In the following sections, we elaborate on the rationale behind this assumption.

4.1.1 Qualitative perspective

• DCs reside in the bladder tissue in homeostatic (Bowyer et al., 2022).
• The review conducted by Merad et al. (2009) indicates that tissue-DC homeostasis requires constant

replacement with new cells. Therefore, the decision to model constant production arises from the
natural turnover of antigen-presenting cells (APCs), particularly dendritic cells (DCs), in the bladder,
as previously observed and modeled for other diseases (Marino and Kirschner, 2004), including
non-muscle-invasive bladder cancer (NMIBC) (Bunimovich-Mendrazitsky et al., 2011). Consequently,
we represented the source of effector cells (E) using d0, providing an inclusive value, given that CTLs
are activated by DCs (Hori et al., 2017, 2019), and that the model mentioned above in Bunimovich-
Mendrazitsky et al. (2011) has modeled CTL counts proportional to the APC count.

4.1.2 Quantitative perspective

We utilize reported values and frequencies from biological sources to assess whether the model’s terms
and structure can accommodate values consistent with those observed in the bladder. The model assumes
continuous replacement of 1.032×105 [cells] per day, based on the reported replenishment rate of DCs (Liu
et al., 2007). The aim is to evaluate if this term adequately describes counts reported in both homeostatic
and BC states, employing two different estimations.
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The model represents homeostasis with the term d0
µ2

, representing the ratio of immune production to
mortality rate. This term’s value is calculated as 11, 316 cells. It’s essential to note that our goal is to
ensure the correct order of magnitude for these parameters. However, given the absence of continuous
counts of long time periods of NMIBC data, calibration is not currently feasible. Therefore, our assessment
focuses on the qualitative agreement of our chosen parameters with the homeostatic effector cells count,
constituting a fundamental evaluation:

• The absolute counts of total live DCs for healthy and tumor groups in orthotopic model of BC showed
approximately 104 − 105 cells, and CD8+ cells are of order of magnitude of 104 − 105 for tumor
group and 102 for healthy bladder (Senserrich et al., 2022). Therefore, taking this value, for the term
effector cells the incompasses DCs and CTLs takes values which is within the observed order (also for
selecting d0

µ2
as the initial condition).

• DCs reside in the bladder tissue in homeostatic phase. Using the information given in Bowyer et al.
(2022) that healthy murine bladders contain 30, 000 − 50, 000 CD45+ cells, and DCs are the most
prevalent immune cell in the bladder. They account for around 25% of all CD45+cells: 7, 500−12, 500
DCs. The model value is within this range.

The choice of this parameter is based on biological sources suggesting consistency with the order of
magnitude of the homeostatic and BC immune cell count. Furthermore, theoretical drug dose determination
and simulations in following sections explore variations in this parameter, ensuring comprehensive analysis.

4.2 Rationale for scaled MMC instillation rate

In constructing our model, we considered that dividing the treatment dose, m0, by 365 days might
yield a linear drug response, contrary to the nonlinear patterns observed in oncological studies of MMC
for NMIBC (Zhu et al., 2013; Shi et al., 2018). To address this concern, we incorporated the nonlinear
Michaleis-Menten term p1M

M+a into the equations governing tumor cells (T ) and effector cells (E) in system
(1), introducing saturation behavior to the model. Additionally, sensitivity analysis revealed that m is not
among the most influential parameters (see Subsection 5.3). Furthermore, we explored the potential indirect
effects of administering a single large dose. If the response were linear, a single large MMC dose would be
expected to induce a massive elimination event of tumor cells and a substantial recruitment of immune
cells, thereby shifting the tumor into rapid control mode—a scenario not achievable with continuous low
doses. To assess this, we conducted numerical simulations simulating a single large MMC dose at ten times
the dose m0 (from which we obtain the instillation rate, m).

Although we observe an increase in immune cells in Figure S5, the maximal value seen is approximately
2× 105, which decreases to 1.1× 104 at the end of 400 days. This aligns with our estimated values for
immune cell counts from biological sources in Table S2. However, no rapid tumor cell elimination is
observed, and the decline is spread over the 400-day period, with tumor cell counts remaining above 1×106.
Consequently, the observed curves support the validity of our approach in scaling the drug instillation rate.

4.3 Distinct simulation scenarios based on parameters variations

We aim to elucidate the profound impact of three key parameters - d0, r, and p2 - which, according to
our sensitivity analysis detailed in Subsection 5.3, hold significant influence on tumor size. Considering
a medium-sized tumor with an initial count of T (0) = 1 × 107, variations in each of these parameters
induce transitions between disease states. Specifically, alterations in the growth rate parameter r (illustrated
in Figure S6a) dictate tumor growth intensity, while adjustments in immune system parameters such as
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Figure S5. Comparison of simulation results for large (10×m0) and small dose (m0) treatments.

the higher killing parameter p2 or production rate d0 (depicted in Figures S6 b and S6c ) influence the
strength of the immune response. That is, the changes in parameter values also govern shifts in disease
states, alongside initial tumor size.

4.4 Qualitative agreement with oncological studies

In two studies the outcomes of a single MMC instillation, with results classified by tumor size are
described (Solsona et al., 1999; Ersoy et al., 2013). This aligns with the same type of treatment that the
model was built to describe. The qualitative examination was done by translating drug dose in the studies
protocolos into parameters, from units of [mg/ml] to [µM ]:

• In Solsona et al. (1999), patients in the standard treatment group received 30 mg of MMC diluted with
50 mL of sterile saline (simulated in Figure S7):

m0 = ( Protocol dose )× ( Mw of MMC ) =

(
30mg

50ml

)(
g

103mg

)(
1 mol

334 g

)(
106µmol

1 mol

)
=

1.796[µmol/ml] = 1, 796[µM].

The corresponding drug instillation rate, m:
m = m0

τ = 1,796[µM ]
365 days = 4.92[µM/day].

• In Ersoy et al. (2013), patients in the standard treatment group received 40 mg of MMC diluted with
40 mL of sterile saline (simulated in Figure S8)::

m0 = ( Protocol dose )× ( Mw of MMC ) =

(
40mg

40ml

)(
g

103mg

)(
1 mol

334 g

)(
106µmol

1 mol

)
=

2.994[µmol/ml] = 2, 994[µM].
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Figure 6a. Variations in r.

Figure 6b. Variations in p2.

Figure 6c. Variations in d0. d∗0 is the notation for the varied d0.

Figure 6. Tumor size (T ) curves for single parameter variations in each simulation.

The corresponding drug instillation rate, m:
m = m0

τ = 2,994[µM ]
365 days = 8.202[µM/day].

Frontiers 11



Supplementary Material

Figure S7. Threshold for T (0) with the dose administration of Solsona et al. (1999). Here, we used the
following initial conditions for M and E: M(0) = 0 and E(0) = d0/µ2.

The simulated results to determine the highest value of T (0) for successful treatment are presented in
Figures S7 and S8. We regard cure as decrease in tumor cell count (for longer periods, the simulations
show that this number declines below 1). In both cases, we utilized a minimum value for the MMC killing
rate, 0.12[day−1], to exclude results that may not be universally applicable to all patients, given the varied
effectiveness of the drug among different individuals. Crucially, it must be clarified that the continuous
administration of MMC aims to simplify the treatment process, typically delivered over a few hours. It
unequivocally does not imply an intention for ongoing drug administration beyond the recommended
clinical duration, or to predict treatment outcomes.
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Figure S8. Threshold for T (0) with the dose administration of Ersoy et al. (2013). Here, we used the
following initial conditions for M and E: M(0) = 0 and E(0) = d0/µ2.

5 DRUG DOSE DETERMINATION

For example, a direct calculation in the same manner as in each hypothetical patient case:

1. Step 0- Use theoretical parameters set:

(µ1, a, µ2, p1, d0, p2) = (21.05, 100, 9.12, 0.12, 105, 1.82296× 10−6)

2. Step 1- Verify positivity condition (7) for m: the range for the growth rate r of which (7) holds:

0.0199 < r < 0.0256.

3. Step 2- Solve condition (6) for m: To substitute r = 0.02 that was chosen arbitrarily from the range
found in step 1:

0 < m < 4.219[µM/ day ].

4. Step 3- Reverse time scaling of m: To multiply by 365[day] to get the dosage m0 in units of µM (see
detailed calculation in step 3, Figure 4):

m0 < 1, 539.935[µM].

5. Step 4- Use conversion factors to translate [µM] unit into mg : To find x, the mass in mg of the
upper bound of MMC dosage, simply use the representation of the drug dose in [µM] units as a product
conversion factors,with only the value for mg unknown (see step 4, Figure 4) :

1, 539.935[µM ] =
( x mg

50 ml

)( g

103 mg

)(
1mol

334 g

)(
106µmol

1 mol

)(
103 ml

1L

)
Frontiers 13



Supplementary Material

=⇒ x = 25.716.

Equivalently, the sterile water volume for a given mass of MMC can be determined.
6. Step 5- Compare to the literature: This result is within the range of treatment protocols. The EAU

guidelines recommended 20 − 40mg as the standard MMC dose (Logan et al., 2012; Racioppi
et al., 2019). A reasonable dose combining the model results and the clinical recommendation is
(20− 25.716)mg. Therefore:

MMC dose = 20− 25.716mg (in 50ml sterile water).

6 UNCERTAINTY ANALYSIS OF ESTIMATED PARAMETERS

Uncertainty analysis was performed with respect to the tumor cells count (T ) for the parameters µ1 and a
at day 365. We selected these parameters because they can be estimated in numerous ways in the absence
of empirical or consensus data. We took the range of each parameter from half to twice its value in Table 1.
Figure S9 presents the different dynamics of the system for the tumor population count. The x-axis is the
values of parameter µ1 in units of [µM ], while the y-axis is the values of parameter a in units of

[
day−1

]
.

The color column shows cells population count, providing a simplified interpretation of tumor size, for
any pair of (µ1, a); the maximum number of tumor cells is 8.041 × 108. We see that T is an increasing
function of each of the parameters µ1, a alone and combined. The reason is the following: if µ1 is small
then the time for MMC to be washed out is longer, and if a is small then the amount of MMC required
for the tumor-killing reaction rate to reach half of its maximum is small. Therefore, a smaller value of
both parameters could result in a more favorable situation. With regard to µ1, it was indeed reported that
the clinical efficacy of intravesical MMC chemotherapy is constrained by the rapid clearance (Joice et al.,
2019). The variation in tumor cell counts here may be viewed as a result of different patient conditions.
Through conducting this analysis for µ1 and a, we aim to underscore the importance of further biological
research to determine their values.

Figure S9. The color column shows the tumor cells count T (µ1, a) when µ1 varies between (10.525−
42.1)

[
day−1

]
and a between (50 − 200) [µM ]. All other parameter values remain the same as in

Table 1.
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