

## Supporting Information for

# Unraveling the role of thermal fluctuations on the exciton structure of the cryptophyte PC612 and PC645 photosynthetic antenna complexes

Beste Ozaydin<sup>1,2</sup> and Carles Curutchet<sup>1,2\*</sup>

#### **1** Supplementary Figures and Tables

### 1.1 Supplementary Tables

**Supplementary Table S1**. Root-mean square fluctuations (RMSF) calculated along classical MD trajectories for the pigments in PC612 and PC645.

| PC612               | RMSF (Å) | PC645               | RMSF (Å) |
|---------------------|----------|---------------------|----------|
| DBV50/61B           | 0.96     | DBV50/61B           | 0.76     |
| DBV50/61D           | 0.94     | DBV50/61D           | 0.84     |
| PCB <sub>158B</sub> | 0.93     | PCB <sub>158B</sub> | 0.87     |
| PCB <sub>158D</sub> | 1.03     | PCB <sub>158D</sub> | 0.85     |
| PCB <sub>82B</sub>  | 0.78     | PCB <sub>82B</sub>  | 0.80     |
| PCB <sub>82D</sub>  | 0.91     | PCB <sub>82D</sub>  | 0.78     |
| PCB <sub>20A</sub>  | 2.02     | MBV <sub>19A</sub>  | 0.81     |
| PCB <sub>20C</sub>  | 1.30     | MBV <sub>19C</sub>  | 0.79     |

| Supplementary Table S2. Average MD-OPT and MD-BOMD site energies ( | cm <sup>-1</sup> ) computed along |
|--------------------------------------------------------------------|-----------------------------------|
| the classical MD trajectories of PC612 and PC645.                  |                                   |

| PC612                 | MD-BOMD | MD-OPT | PC645                 | MD-BOMD | MD-OPT |
|-----------------------|---------|--------|-----------------------|---------|--------|
| DBV <sub>50/61B</sub> | 19812   | 20452  | DBV <sub>50/61B</sub> | 19614   | 20166  |
| DBV50/61D             | 20050   | 20598  | DBV50/61D             | 19674   | 20407  |
| PCB <sub>158B</sub>   | 18290   | 18702  | PCB <sub>158B</sub>   | 18134   | 18555  |
| PCB <sub>158D</sub>   | 18331   | 18760  | PCB <sub>158D</sub>   | 17924   | 18484  |
| PCB <sub>82B</sub>    | 17817   | 18794  | PCB <sub>82B</sub>    | 17942   | 18657  |
| PCB <sub>82D</sub>    | 17932   | 18719  | PCB <sub>82D</sub>    | 17675   | 18196  |
| PCB <sub>20A</sub>    | 17964   | 18926  | MBV <sub>19A</sub>    | 17497   | 18228  |
| PCB <sub>20C</sub>    | 18102   | 18876  | MBV <sub>19C</sub>    | 17629   | 18175  |

| PC612               | MD-BOMD | MD-OPT | PC645               | MD-BOMD | MD-OPT |
|---------------------|---------|--------|---------------------|---------|--------|
| DBV50/61B           | 429     | 259    | DBV50/61B           | 441     | 243    |
| DBV50/61D           | 414     | 299    | DBV50/61D           | 308     | 315    |
| PCB <sub>158B</sub> | 370     | 258    | PCB <sub>158B</sub> | 531     | 305    |
| PCB <sub>158D</sub> | 412     | 305    | PCB <sub>158D</sub> | 397     | 294    |
| PCB <sub>82B</sub>  | 364     | 240    | PCB <sub>82B</sub>  | 606     | 419    |
| PCB <sub>82D</sub>  | 331     | 185    | PCB <sub>82D</sub>  | 459     | 241    |
| PCB <sub>20A</sub>  | 568     | 305    | MBV <sub>19A</sub>  | 346     | 146    |
| PCB <sub>20C</sub>  | 455     | 352    | MBV <sub>19C</sub>  | 301     | 244    |

**Supplementary Table S3**. Standard deviation (cm<sup>-1</sup>) of MD-OPT and MD-BOMD site energies computed along the classical MD trajectories of PC612 and PC645.

| PC612                 | MD-BOMD | MD-OPT | PC645                 | MD-BOMD | MD-OPT |
|-----------------------|---------|--------|-----------------------|---------|--------|
| DBV <sub>50/61B</sub> | 12.9    | 13.1   | DBV <sub>50/61B</sub> | 13.1    | 13.2   |
| DBV50/61D             | 12.6    | 12.8   | DBV50/61D             | 13.0    | 13.1   |
| PCB <sub>158B</sub>   | 13.5    | 14.0   | PCB <sub>158B</sub>   | 14.1    | 14.3   |
| PCB <sub>158D</sub>   | 13.8    | 14.0   | PCB <sub>158D</sub>   | 14.2    | 14.4   |
| PCB <sub>82B</sub>    | 14.4    | 14.4   | PCB <sub>82B</sub>    | 14.2    | 14.3   |
| PCB <sub>82D</sub>    | 14.4    | 14.4   | PCB <sub>82D</sub>    | 14.5    | 14.7   |
| PCB <sub>20A</sub>    | 13.6    | 13.6   | MBV <sub>19A</sub>    | 14.6    | 14.5   |
| PCB <sub>20C</sub>    | 14.0    | 14.2   | MBV <sub>19C</sub>    | 14.3    | 14.5   |

**Supplementary Table S4**. Average MD-OPT and MD-BOMD electronic transition dipole moments (Debye) computed along the classical MD trajectories of PC612 and PC645.



**Supplementary Figure S1**. Alignment of PC645 pigment structures in the crystal structure (black) and optimized along the MD simulation (colors): a) DBV<sub>51/61B</sub>, b) DBV<sub>51/61D</sub>, c) PCB<sub>158B</sub> and d) PCB<sub>158D</sub>.



**Supplementary Figure S2**. Alignment of PC612 pigment structures in the crystal structure (black) and optimized along the MD simulation (colors): a) DBV<sub>51/61B</sub>, b) DBV<sub>51/61D</sub>, c) PCB<sub>158B</sub> and d) PCB<sub>158D</sub>.



**Supplementary Figure S3**. Alignment of PC612 pigment structures in the crystal structure (black) and optimized along the MD simulation (colors): a) PCB<sub>82B</sub>, b) PCB<sub>82D</sub>, c) PCB<sub>20A</sub> and d) PCB<sub>20C</sub>.



**Supplementary Figure S4**. Distribution of site energies for PC645 pigments computed from MD-OPT and MD-BOMD calculations: a) DBV<sub>51/61B</sub>, b) DBV<sub>51/61D</sub>, c) PCB<sub>158B</sub> and d) PCB<sub>158D</sub>.



**Supplementary Figure S5**. Distribution of site energies for PC645 pigments computed from MD-OPT and MD-BOMD calculations: a) PCB<sub>82B</sub>, b) PCB<sub>82D</sub>, c) MBV<sub>19A</sub> and d) MBV<sub>19C</sub>.



**Supplementary Figure S6**. Distribution of site energies for PC612 pigments computed from MD-OPT and MD-BOMD calculations: a) DBV<sub>51/61B</sub>, b) DBV<sub>51/61D</sub>, c) PCB<sub>158B</sub> and d) PCB<sub>158D</sub>.



**Supplementary Figure S7**. Distribution of site energies for PC612 pigments computed from MD-OPT and MD-BOMD calculations: a) PCB<sub>82B</sub>, b) PCB<sub>82D</sub>, c) PCB<sub>20A</sub> and d) PCB<sub>20C</sub>.



**Supplementary Figure S8**. Distribution of electronic transition dipole moments for PC645 pigments computed from MD-OPT and MD-BOMD calculations: a) DBV<sub>51/61B</sub>, b) DBV<sub>51/61D</sub>, c) PCB<sub>158B</sub> and d) PCB<sub>158D</sub>.



**Supplementary Figure S9**. Distribution of electronic transition dipole moments for PC645 pigments computed from MD-OPT and MD-BOMD calculations: a) PCB<sub>82B</sub>, b) PCB<sub>82D</sub>, c) MBV<sub>19A</sub> and d) MBV<sub>19C</sub>.



**Supplementary Figure S10**. Distribution of electronic transition dipole moments for PC612 pigments computed from MD-OPT and MD-BOMD calculations: a) DBV<sub>51/61B</sub>, b) DBV<sub>51/61D</sub>, c) PCB<sub>158B</sub> and d) PCB<sub>158D</sub>.



**Supplementary Figure S11**. Distribution of electronic transition dipole moments for PC612 pigments computed from MD-OPT and MD-BOMD calculations: a) PCB<sub>82B</sub>, b) PCB<sub>82D</sub>, c) PCB<sub>20A</sub> and d) PCB<sub>20C</sub>.



**Supplementary Figure S12**. Experimental<sup>1–3</sup> and simulated absorption (left) and circular dichroism (right) spectra of a) PC612 and b) PC645 cryptophyte antenna complexes. Simulations are based on energies and couplings computed from QM/MMPol TD-CAM-B3LYP/6-31G(d) calculations performed on MD-OPT geometries using the EXAT or FCE codes to calculate the spectra. We applied the following shifts to simulated spectra to fit the experimental bands: 2180 cm<sup>-1</sup> (EXAT PC612), 1540 cm<sup>-1</sup> (FCE PC612), 2300 cm<sup>-1</sup> (EXAT PC645) and 2080 cm<sup>-1</sup> (FCE PC645). Static disorder was modeled by applying a common  $\sigma = 100$  cm<sup>-1</sup>.



**Supplementary Figure S13**. Comparison of experimental<sup>1–3</sup> and simulated absorption spectra of a) PC612 and b) PC645 cryptophyte antenna complexes obtained including or neglecting electronic couplings between bilin pigments. Simulations are based on QM/MMPol TD-CAM-B3LYP/6-31G(d) calculations performed on MD-BOMD geometries using the EXAT or FCE codes to calculate the spectra. We applied the following shifts to simulated spectra to fit the experimental bands (couplings/no couplings values are indicated): 1600/1500 cm<sup>-1</sup> (EXAT PC612), 1000/980 cm<sup>-1</sup> (FCE PC612), 1700/1640 cm<sup>-1</sup> (EXAT PC645) and 1480/1500 cm<sup>-1</sup> (FCE PC645). Static disorder was modeled by applying a common  $\sigma = 100$  cm<sup>-1</sup>.



**Supplementary Figure S14**. Experimental<sup>1–3</sup> and simulated absorption (left) and circular dichroism (right) spectra of a) PC612 and b) PC645 cryptophyte antenna complexes. Simulations are based on energies and couplings computed from QM/MMPol TD-CAM-B3LYP/6-31G(d) calculations performed on MD-BOMD geometries using the EXAT or FCE codes to calculate the spectra. We applied the following shifts to simulated spectra to fit the experimental bands: 1560 cm<sup>-1</sup> (EXAT PC612), 920 cm<sup>-1</sup> (FCE PC612), 1620 cm<sup>-1</sup> (EXAT PC645) and 1400 cm<sup>-1</sup> (FCE PC645). Static disorder based on the MD-OPT  $\sigma$  values reported for each bilin in Table S3.



**Supplementary Figure S15**. Experimental<sup>1–3</sup> and simulated absorption (left) and circular dichroism (right) spectra of a) PC612 and b) PC645 cryptophyte antenna complexes. Simulations are based on energies and couplings computed from QM/MMPol TD-CAM-B3LYP/6-31G(d) calculations performed on MD-OPT geometries using the EXAT or FCE codes to calculate the spectra. We applied the following shifts to simulated spectra to fit the experimental bands: 2320 cm<sup>-1</sup> (EXAT PC612), 1660 cm<sup>-1</sup> (FCE PC612), 2260 cm<sup>-1</sup> (EXAT PC645) and 1980 cm<sup>-1</sup> (FCE PC645). Static disorder based on the MD-OPT  $\sigma$  values reported for each bilin in Table S3.



**Supplementary Figure S16**. Experimental<sup>1–3</sup> and simulated fluorescence spectra of a) PC612 and b) PC645 cryptophyte antenna complexes. Simulations are based on energies and couplings computed from QM/MMPol TD-CAM-B3LYP/6-31G(d) calculations performed on MD-BOMD (left) and MD-OPT (right) geometries using the EXAT code to calculate the spectra. We applied the following shifts to simulated spectra to fit the experimental bands: 1620 cm<sup>-1</sup> (PC612 MD-BOMD), 2480 cm<sup>-1</sup> (PC612 MD-OPT), 1740 cm<sup>-1</sup> (PC645 MD-BOMD) and 2100 cm<sup>-1</sup> (PC645 MD-OPT). Static disorder based on the MD-OPT  $\sigma$  values reported for each bilin in Table S3.

#### References

(1) Mirkovic, T.; Doust, A. B.; Kim, J.; Wilk, K. E.; Curutchet, C.; Mennucci, B.; Cammi, R.; Curmi, P. M. G.; Scholes, G. D. Ultrafast Light Harvesting Dynamics in the Cryptophyte Phycocyanin 645. *Photochemical & Photobiological Sciences* **2007**, *6* (9), 964–975. https://doi.org/10.1039/b704962e.

(2) Harrop, S. J.; Wilk, K. E.; Dinshaw, R.; Collini, E.; Mirkovic, T.; Teng, C. Y.; Oblinsky, D. G.; Green, B. R.; Hoef-Emden, K.; Hiller, R. G.; Scholes, G. D.; Curmi, P. M. G. Single-Residue Insertion Switches the Quaternary Structure and Exciton States of Cryptophyte Light-Harvesting Proteins. *Proc Natl Acad Sci U S A* **2014**, *111* (26), E2666-75. https://doi.org/10.1073/pnas.1402538111.

(3) Arpin, P.; Turner, D. B.; McClure, S. D.; Jumper, C. C.; Mirkovic, T.; Challa, J. R.; Lee, J.; Teng, C. Y.; Green, B. R.; Wilk, K. E.; Curmi, P. M. G.; Hoef-Emden, K.; McCamant, D. W.; Scholes, G. D. Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations. *J Phys Chem B* **2015**, *119*, 10025–10034. https://doi.org/10.1021/acs.jpcb.5b04704.