Supplementary Material ## Sentiment Analysis of Epidemiological Surveillance Reports On COVID-19 In Greece Using Machine Learning Models Christos Stefanis, Elpida Giorgi, Konstantinos Kalentzis, Athanasios Tselemponis, Evangelia Nena, Christina Tsigalou, Christos Kontogiorgis, Yiannis Kourkoutas, Aikaterini Chatzaki, Ioannis Dokas, Theodoros Constantinidis and Eugenia Bezirtzoglou* * Correspondence: Eugenia Bezirtzoglou:empezirt@yahoo.gr Supplement 1. Sentiment analysis and public health ## c) sentiment analysis, work applied and applications | Sentiment analysis applications | Work applied | Research paper | |--|--|---| | monitoring mass gatherings during a
pandemic | Mobile-Health applications | A Proposed Framework for
DevelopingUser-Centred Mobile
Healthcare Applications for the Biggest
Annual Mass Gathering (Hajj) Post
COVID-19 | | • estimate disease incidences for the current week (nowcasting) onsidering the social media data and the disease case counts reported by the Government agencies | Digital epidemiology/disease epidemics | A Social Media Time-Series Data
Analytics Approach for Digital
Epidemiology | | • sentiment changes in COVID-19-
related tweets and public health
policies and events | Build a surveillance system for
monitoring people's attitudes towards
public health policies | Analyzing Twitter Data to Evaluate
People's Attitudes towards Public
Health Policies and Events in the Era
of COVID-19 | | measure the spatio-temporal
sentiment towards a new vaccine | Measuring population health behaviors over time and space | Assessing Vaccination Sentiments with
Online Social Media: Implications for
Infectious Disease Dynamics and
Control | | extract knowledge regarding
infectious diseases, their symptoms,
or poor environment conditions what
promote the propagation of these
diseases | CollaborativeHealth, an infodemiology platform | CollaborativeHealth: Smart
echnologies to Surveil Outbreaks of
Infectious Diseases Through Direct and
Indirect Citizen Participation | | • identify and extract disease symptoms and their associations | Biomedical text analytics system, DiseaSE (Disease Symptom Extraction) | DiseaSE: A biomedical text analytics
system for disease symptom extraction
and characterization | | • user behavioral patterns on the web | A social media based mosquito-borne
disease surveillance and outbreak
management | Effective surveillance and predictive mapping of mosquito-borne diseases using social media | | predict infectious disease such as
influenza-like illness (ILI) outbreaks
using Twitter data | Infectious Disease Prediction | Evaluation of IBM Watson Natural
Language Processing Service to predict
influenza-like illness outbreaks from
Twitter data | | • public sentiment related to COVID-
19 vaccines | Real-time analysis of large bodies of text related to disease outbreaks and vaccination | Fine-tuned Sentiment Analysis of
COVID-19 Vaccine–Related Social
Media Data: Comparative Study | | identifies and characterizes user-
generated messages related to opioid
abuse, heroin injection drug use, and
HIV status | Infoveillance | Identification and characterization of
tweets related to the 2015 Indiana HIV
outbreak: A retrospective infoveillance
study | | identifying the infectious or
recovered period of flu cases through
social media | Epidemic control and prevention in real time | Infectious or Recovered? Optimizing
the Infectious Disease Detection
Process for Epidemic Control and
Prevention Based on Social Media | | • detect the emergence of diseases,
particularly influenza-like illnesses,
and foster disease surveillance | Disease classification | Influenza-like Illness Detection from
Arabic Facebook Posts Based on | | systems | | sentiment Analysis and 1D convolutional Neural Network | |---|---|---| | • information-seeking patterns during
pandemics such as COVID-19 using
Google Trends | Infodemiology | Information-Seeking Patterns During
the COVID-19 Pandemic Across the
United States: Longitudinal Analysis of
Google Trends Data | | • disease outbreaks that occur overseas avian influenza A(H7N9) | Disease surveillance and public sensing | Leveraging social networking sites fordisease surveillance and public sensing: the case of the 2013 avian influenza A(H7N9) outbreak in China | | • content analysis and information surveillance | Infodemiology | Main uses of Instagram in oral health research–A scoping review | | • patient online review | Fading topics and sentiment trends in physician rating websites | Mining topic and sentiment dynamics
in physician rating websites during the
early wave of the COVID-19
pandemic: Machine learning approach | | the spread of influenza can be predicted with high accuracy monitor the spread of influenza in selected cities in real-time. | Detecting and monitoring diseases in real time | Mining Twitter Data For Influenza
Detection and Surveillance | | social, medical, public health and technology sciences. | Vaccine hesitancy | Multi-perspectives systematic review
on the applications of sentiment
analysis for vaccine hesitancy | | • predict the possible number of cases with H1N1 disease | Integrated Disease Survellience
Program | Prediction of Influenza-like Illness
from Twitter Data and Its Comparison
with Integrated Disease Surveillance
Program Data | | drug abuse epidemiology | Development of a novel semantic web platform | PREDOSE: A semantic web platform
for drug abuse epidemiology using
social media | | weekly flu rate predictions | Track disease outbreaks and provide early warnings, even for newest outbreaks | Preliminary Flu Outbreak Prediction Using Twitter Posts Classification and Linear Regression With Historical Centers for Disease Control and Prevention Reports: Prediction framework Study | | emotional response of Moroccan
citizens to COVID-19 pandemic and
its effects | Decision-making assistance tool for COVID-19 mitigation and management | Real-Time Infoveillance of Moroccan
Social Media Users' Sentiments
towards the COVID-19 Pandemic and
Its Management | | identify emotions in social media
conversations about COVID-19 | Public health surveillance | Rise and fall of the global conversation
and shifting sentiments during the
COVID-19 pandemic | | • identify the locations of disease outbreaks | Public health surveillance | Sentiment Analysis as a Service: A social media based sentiment analysis framework | | sentiment analysis to document
patients' experience and emotional
distress of dermatological diseases
(alopecia areata (AA), idradenitis
suppurativa HS), and psoriasis
(PsO) in comparison to fibromyalgia | Identify patients' experiences of skin disease | Sentiment analysis of tweets on
alopecia areata, hidradenitis
suppurativa, and psoriasis: Revealing
the patient experience | | (FM) | | | |---|--|--| | • reporting of SARS-CoV-2 outbreak status | Develop reliable early information
surveillance and warning system for
pandemic outbreaks | Sentiment-Based Spatiotemporal
Prediction Framework for Pandemic
Outbreaks Awareness Using Social
Networks Data Classification | | management of the pandemic and its
waves might actually represent a
novel preventive approach to hinder
emotional contagion, disseminating
reliable information and nurturing
trust | COVID-19 emotional contagion surveillance | Surveilling COVID-19 Emotional
Contagion on Twitter by Sentiment
Analysis | | flu prediction/detection | Flu disease surveillance systems | Text Classification of Flu-related
Tweets Using FastText with Sentiment
and Keyword Features | | surveillance of mosquito-borne diseases disease classification with demographic variables detection prediction public awareness | Decision making-mosquito surveillance programs | Text mining in mosquito-borne disease: A systematic review | | • identification of the main topics posted by Twitter users related to the COVID-19 pandemic. | Infoveillance | Top Concerns of Tweeters During the
COVID-19 Pandemic: Infoveillance
Study | | • Identification of dominant themes, topics, sentiments, and changing rends in tweets about the COVID-19 pandemic | Infoveillance | Topics, Trends, and Sentiments of
Tweets About the COVID-19
Pandemic: Temporal Infoveillance
Study | | detecting influenza epidemics using
Twitter | Infectious Disease Prediction and early warning | Twitter Catches The Flu: Detecting
Influenza Epidemics using Twitter | | • public concern about epidemics | Monitoring public health concerns | Twitter sentiment classification for measuring public health concerns | | • surveillance | Using Twitter as a means of surveillance for public health crises and specifying groups or populations at risk | Using a mixed methods approach to identify public perception of vaping risks and overall health outcomes on Twitter during the 2019 EVALI outbreak | | • produce national flu forecasts for the United States | Influenza forecasting using electronic health records (EHR) and in Internet users' search activity | Using electronic health records and
Internet search information for accurate
influenza forecasting | | | | | | | | | | | | | | | | |