
1

Supplementary Material2

S1 ADDITIONAL TABLES AND FIGURES REFERENCED IN THE MANUSCRIPT

Parameter Value
a 0.7
b 0.8
τ 12.5

gcoup {varies}
Table S1. Parameter values of the FHN model.

Parameter Value Parameter Value Parameter Value
Cm (fF) 5310 Vm (mV) 4 Sm (mV) 14
Vn (mV) -15 Sn (mV) 5.6 κ1 (mV) 65
κ2 (mV) 20 τ (ms) 37.5 V (mV) -75
Vh (mV) -10 Sh (mV) -10 gK (pS) 2500
gCa (pS) 1400 VK (mV) -75 VCa (mV) 110
Kd (µ M) 100 gK−Ca (pS) 30000 f 0.001
kCa (ms−1) 0.03 α

(
µm3Coul

mMol

)
4.5061× 10−6 gcoup (pS) {varies}

Table S2. Parameter values of the SRK model.

1



Supplementary Material

2

3

6

5

1

4

7

Calculating SortednessA

C

2

3

6

5

1

4

7

2

3

6

5

1

4

7

a = 0

a = 1

Sorting AlgorithmB

Figure S1. Sortedness and the sorting algorithm. A. An illustration of node, population, and network
sortedness calculations on a small network. B. A successful iteration of the forward sorting algorithm. C.
These are zoomed in portions of the WS networks, which are shown as black boxes in Fig. 2A. The initial
network (a = 0) shows the population 1 nodes mostly isolated, but the final network (a = 314) shows two
distinct clusters of several population 1 nodes.

2



0

-0.03

115

0.34

0.78 0.15

0

-0.03

115

0.34

0.78 0.15G G G -0.03 0.78
0.15

0.34

0  

115

G

GP Smoothing

Figure S2. Gaussian process regression model. We now simulate dynamics on networks where (G, a)
pairs are selected on a Latin hypercube. For each point, we use a different initial network P 0

k and run the
sorting algorithm to find the network P a

k . We also use randomly selected initial conditions, Y (0). In the
case of the WS networks, we also use a different WS graph for each point. Left panel The feature P is
shown as a scatter plot for each point (G,A). Middle-left panel We use a Gaussian process regression
model trained to the data on the Latin hypercube to estimate the points on a regular grid. Middle-right
panel We can use this smoothed dataset to produce surface plots. Right panel We show the panels as
heatmaps. Here, we show the resulting heatmap after training GP model with 10000 points using the
WS-FHN network model. This is for the case where coupling is strong (gcoup = 0.1).

Frontiers 3



Supplementary Material

WS - FHN (No Rewiring)
A

G G

Peaks Order

0.5 0.7

Isosurface Order

p1
p2

B

-0.03 0.95
0.15

0.34

0  

121

-0.03 0.95
0.15

0.34

0

1

-0.03 0.95
0.15

0.34

0  

125

-0.03 0.95
0.15

0.34

0

1

Strong Coupling

Weak Coupling
time (s)

Figure S3. No rewiring in the WS-FHN networks. A. Left panel: The isosurfaces for the P 1 (blue)
and P 2 (black) half-maxima in the WS-FHN networks with no rewiring. These surfaces do not separate.
Right panel: The isosurfaces for R illustrate the boundary between low and high synchrony as well as
its direction in the WS-FHN, β = 0 networks. Within the active region, synchrony is always low due to
the propagation of waves. B. Heatmaps for P (top left panel) and R (top right panel) when gcoup = 0.1

(strong). Heatmaps for P (bottom left panel) and R (bottom right panel) when gcoup = 0.02 (weak). This
shows that the phase transition is still a decreasing function of A, but that synchrony is low regardless
of coupling strength. Square, diamond, triangle, and circle show wave propagation for strong and weak
coupling and low and high sortedness.

4



-0.03 0.96
0.2

0.6

0 

27

-0.03 0.96
0.2

0.6

0

1

-0.03 0.96
0.2

0.6

0 

28

-0.03 0.96
0.2

0.6

0

1

WS - SRK (No Rewiring)
A

G G

Peaks Order

0.5 0.7

Isosurface Order

p1
p2

B
Strong Coupling

Weak Coupling
time (m)

Figure S4. No rewiring in the WS-SRK networks. A. Left panel: The isosurfaces for the P 1 (blue)
and P 2 (black) half-maxima in the WS-SRK networks with no rewiring. These surfaces do not separate.
Right panel: The isosurfaces for R illustrate the boundary between low and high synchrony as well as
its direction in the WS-SRK, β = 0 networks. Within the active region, synchrony is low for low to
intermediate coupling due to wave propagation. B. Heatmaps for P (top left panel) and R (top right panel)
when gcoup = 10 (strong). Heatmaps for P (bottom left panel) and R (bottom right panel) when gcoup = 2
(weak). This shows that the phase transition is still a decreasing function of A, that synchrony is low for
weak coupling, but that synchrony is still high for strong coupling. Square and diamond show synchronus
activity for strong coupling. Triangle, and circle show wave propagation for weak coupling, but that the
wave propagation remains fast relative to the period of c.

Frontiers 5



Supplementary Material

S2 DESCRIPTION OF THE ROUTINES USED TO GENERATE A βC LATTICE
NETWORK AND PERFORM THE SORTING ALGORITHM ON IT

Algorithm 2-Algorithm 7 are used by Algorithm 1 which is described in the main text.3

Algorithm 2 returns a set of points in R3 corresponding to the centres of spheres within a hexagonal close4
packed lattice (hcp). The input rball corresponds to the radius of the spheres within the lattice, which we5
set to rball = 0.5 so that the distance between any two nearest neighbors is dball = 2rball = 1. Algorithm 26
produces the hcp lattice using a sequence of scalings and shifts of a square lattice which takes the points7
{(x, y, z) | x, y, z ∈ {1, . . . ,M}}, where M is an integer corresponding to the number of spheres along8
the length of the lattice. We sought to embed a larger sphere, Snet, of radius Rnet within the resulting hcp-9
lattice, and therefore, must choose M such that Snet is contained within the lattice. For the square lattice,10
a natural choice would be M = 2Rnet, so that the length of the lattice equals the diameter of the sphere.11
However, for the hcp-lattice, the size of the resulting structure is (M−1)xscale+dball = Mxscale = Mdball12
by (M−1)yscale+dball > Myscale by (M−1)zscale+dball > Mzscale (ignoring the shifts). To counteract13
this, we use:14

M = ceil
(

2Rnet

min([xscale, yscale, zscale])

)
. (S1)

We found that this choice of M generated a lattice which could fully embed the sphere, at least for our15
selection of Rnet = 5.55 (in particular, we increased M and found that the number of nodes within the16
sphere did not increase).17

Algorithm 3 first runs Algorithm 2 to produce an hcp-lattice. It then centres the lattice at the origin (i.e.,18
at (0, 0, 0)) and finds all points that are within a sphere of radius Rnet centred at the origin, which define19
the nodes in the network. It also returns N , the number of nodes in the spherical hcp-lattice (N = 1, 018 in20
this work). Algorithm 4 establishes the Boolean adjacency matrix representing the connections between21
nodes in the spherical hcp-lattice. A connection exists between two nodes if they are at a distance of dball22
from one another. In other words, if two spheres (of radius rball) centred at the locations assigned to two23
nodes would be touching, then a connection exists between them. Algorithm 5 determines the population24
sets Pk for k ∈ 1, 2. It returns the number of nodes Nk in each population, the population membership sets,25
and the initial network sortedness value A0. Algorithm 6 determines the selection probabilities for every26
pair of nodes ({(i, j) | i ∈ P1, j ∈ P2}). Algorithm 7 chooses a candidate swap, produces the population27
sets established by that swap, and calculates A for the updated population sets.28

6



Algorithm 1 Algorithm for producing networks
Inputs:

N : number of nodes in network
a: number of iterations of swapping algorithm to attempt
Dir: signed integer determining whether algorithm runs forwards (positive) or backwards (negative)
ρ: proportion of population 1 nodes

Outputs:
A: network sortedness value
P1: population 1 set
P2: population 2 set
n: number of swaps performed

1: function GENERATENETWORK(N , a, Dir, ρ)
2: (x, y, z), r, K ← ESTABLISHLATTICE(N )
3: N1, N2, P1, P2, A ← ASSIGNINITIALPOPULATIONS(N , ρ)
4: Term← false ▷ Boolean determining whether terminal network state has been reached
5: n← 0

6: while (n < a) and (Term = false) do
7: f , F , Q← COMPUTESELECTIONPROBABILITIES(r[], N1, N2, P1, P2)
8: m← 0

9: swap← true ▷ Boolean determining whether to attempt swaps
10: while (m < N1 ×N2) and (swap = true) do
11: P̃1, P̃2, Ap, k ←NODESWAP(f , F , Q, Dir, N1, N2, P1, P2)
12: if sgn(Ap −A) = sgn(Dir) then
13: P1, P2 ← P̃1, P̃2

14: A ← Ap

15: n← n+ 1

16: swap← false
17: else ▷ Reject swap if A does not change in the desired direction
18: for l← k to N1 ×N2 do
19: F [l]← F [l]− f [k]

20: end for
21: Q← Q− f [k]

22: m← m+ 1

23: end if
24: end while
25: if swap = true then
26: Term← true ▷ Terminal state has been reached
27: end if
28: end while
29: return A, P1, P2, n
30: end function

Frontiers 7



Supplementary Material

Algorithm 2 Initialising HCP lattice
Inputs:

Rnet: radius of the spherical lattice
rball: radius of balls around points in the lattice

Outputs:
(x1, y1, z1), . . . , (xN , yN , zN ): (x, y, z) coordinates of nodes
N : number of nodes in hcp-lattice

1: function ESTABLISHHCPLATTICE(Rnet, rball)
2: dball ← 2rball
3: xscale ← dball

4: yscale ←
√

d2ball − r2ball

5: zscale ←
√

2
3dball

6: xshift ← rball
7: yshift ← −dball√

3

8: M ← ceil( 2Rnet

min([xscale,yscale,zscale])
)

9: counter ← 0

10: for i← 1 to M do
11: for j ← 1 to M do
12: for k ← 1 to M do
13: counter ← counter + 1

14: x[counter]← k × xscale
15: y[counter]← j × yscale
16: z[counter]← i× zscale
17: if j even then
18: x[counter]← x[counter] + xshift
19: end if
20: if i even then
21: y[counter]← y[counter] + yshift
22: end if
23: end for
24: end for
25: end for
26: N ←M3 ▷ Total number of nodes in the lattice
27: return (x, y, z), N
28: end function

8



Algorithm 3 Initialising Sphere lattice
Inputs:

Rnet: radius of the spherical lattice
rball: radius of points in the lattice

Outputs:
(x1, y1, z1), . . . , (xNnet

, yNnet
, zNnet

): (xsphere, ysphere, zsphere) coordinates of nodes
r1, . . . , rNnet

: rsphere radii of nodes
Nnet number of nodes in the spherical lattice

1: function ESTABLISHSPHERELATTICE(Rnet, rball)
2: (x, y, z), N ←ESTABLISHHCPLATTICE(Rnet, rball)
3: x← x−mean(x) ▷ demean vector x
4: y ← y −mean(y) ▷ demean vector y
5: z ← z −mean(z) ▷ demean vector z
6: r ←

√
x2 + y2 + z2 ▷ compute norm over all points

7: counter ← 0

8: for i← 1 to N do
9: if r[i] <= Rnet then ▷ Find members of hcp-lattice within sphere radius Rnet

10: counter ← counter + 1

11: xsphere[counter]← x[i]

12: ysphere[counter]← y[i]

13: zsphere[counter]← z[i]

14: rsphere[counter]← r[i]

15: end if
16: end for
17: Nnet ← counter ▷ Define number of nodes within the spherical domain
18: return (xsphere, ysphere, zsphere), rsphere, Nnet

19: end function

Frontiers 9



Supplementary Material

Algorithm 4 Initialising lattice
Inputs:

Rnet: radius of the spherical lattice
rball: radius of points in the lattice

Outputs:
(x1, y1, z1), . . . , (xN , yN , zN ): (x, y, z) coordinates of nodes
r1, . . . , rN : r radial coordinate of nodes
K ∈ RN × RN : connectivity matrix

1: function ESTABLISHLATTICE(Rnet, rball)
2: (x, y, z), r,N ←ESTABLISHSPHERELATTICE(Rnet, rball)
3: dball ← 2rball
4: for i← 1 to N do
5: for j ← 1 to N do
6: dist←

√
(x[i]− x[j])2 + (y[i]− y[j])2 + (z[i]− z[j])2

7: if dist = dball then
8: K[i][j]← 1

9: else
10: K[i][j]← 0

11: end if
12: end for
13: end for
14: return (x, y, z), r, K
15: end function

10



Algorithm 5 Initialising populations
Inputs:

N : number of nodes in network
ρ: proportion of population 1 nodes

Outputs:
N1, N2: number of nodes in the respective population 1
P1, P2: population sets
A: network sortedness

1: function ASSIGNINITIALPOPULATIONS(N , ρ)
2: U ← random permutation of {1, . . . , N}
3: N1 ← floor(ρN)

4: N2 ← N −N1

5: P1, P2 ← integer array of length N1, integer array of length N2

6: for k ← 1 to N1 do
7: P1[k] = U [k] ▷ Assign first N1 elements of U to P1

8: end for
9: for k ← 1 to N2 do

10: P2[k] = U [N1 + k] ▷ Assign last N2 elements of U to P2

11: end for
12: A ← network sortedness value (17) using P1 and P2

13: return N1, N2, P1, P2, A
14: end function

Frontiers 11



Supplementary Material

Algorithm 6 Defining node pair selection probabilities
Inputs:

r1, . . . , rN : radial coordinates of nodes
N1, N2: number of nodes in the respective population
P1, P2: population sets

Outputs:
f ∝ probability density function for node pair selection
F ∝ cumulative density function for node pair selection
Q: normalisation constant for f

1: function COMPUTESELECTIONPROBABILITIES(r[], N1, N2, P1, P2)
2: f ← array of length N1 ×N2,
3: F ← array of length N1 ×N2 + 1

4: F [1]← 0

5: k, Q← 0

6: for i← 1 to N1 do
7: for j ← 1 to N2 do
8: k ← k + 1

9: p← 1/Rni,P1
× 1/Rnj ,P2

▷ Weight probability of node pair being selected using (20)
10: f [k] = p

11: Q← Q+ p

12: F [k]← Q

13: end for
14: end for
15: return f , F , Q
16: end function

12



Algorithm 7 Node population swapping
Inputs:

f ∝ probability density function for node pair selection
F ∝ cumulative density function for node pair selection
Q: normalisation constant for f
P1, P2: sets of indices of nodes in the respective population

Outputs:
P̃1, P̃2: population sets following node population swap
Ap: network sortedness of network with node populations swapped
k: index of node pair swapped

1: function NODESWAP(f , F , Q, N1, N2, P1, P2)
2: u← U(0, 1) ▷ Sample from unit uniform distribution
3: k ← 1

4: while u < F (k)/Q do
5: k ← k + 1

6: end while
7: i, j ← k/N2, (k − 1)mod N2 + 1 ▷ Indices of selected population nodes
8: P̃1, P̃2 ← P1, P2 ▷ Create copies of P1 and P2

9: P̃1(i), P̃2(j)← P2(j), P1(i) ▷ Trial node population swap
10: Ap ← network sortedness value (17) using P̃1 and P̃2

11: return P̃1, P̃2, Ap, k
12: end function

Frontiers 13



Supplementary Material

S3 EVALUATION OF COLLECTIVE DYNAMICS

For each node, the number of peaks was identified by searching for maxima with a peak prominence of29
0.02 µM in the Ca2+ timecourse (SRK) or 2 a.u. in the v timecourse (FHN) across the simulation duration.30

For a network with N nodes, the time-dependent Kuramoto order parameter is a complex-valued scalar31
defined as32

z(t) = R(t)eiΘ(t) =
1

N

N∑
j=1

eiθj(t), (S2)

where θj(t) is the phase of the jth node, as extracted via a mean-subtracted Hilbert transform of the Ca2+33
signal (SRK) or v signal (FHN) for node j. The argument of z, Θ, is the mean phase of the network34
whilst its magnitude, R, measures the degree of synchrony across the network. We sample the Ca2+ at35
equispaced time points ti = iδt, i = 0, . . . T − 1 and record the time-averaged degree of synchronisation:36
R = 1

T

∑T−1
i=0 R(ti).37

14


	Additional tables and figures referenced in the manuscript
	Description of the routines used to generate a C lattice network and perform the sorting algorithm on it
	Evaluation of collective dynamics

