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Appendices

A. A gentle introduction to sub-Riemannian geometry

In this paper we exploit techniques from differential geometry, and in particular sub - Riemannian
geometry. In this appendix we provide an invitation to these ideas with a rather informal discussion.
For the reader interested in a formal introduction on basic instruments of differential geometry
(arguments of sections A.1 and A.2) please refer to [10]. For a complete and formal mathematical
(comprehensive) introduction to sub-Riemannian geometry we refer to [2], while for a more
informational point of view please consult [9, Ch. 4.2] and [5].

A.1. Tangent bundle. To start, imagine that you are standing at a point on a smooth surface
in the world, far from any boundaries. Now, you can "walk away" from this point in any (2D)
compass direction; for example, you could walk north or south or any direction in-between. If your
steps were very very short, then the (flat) compass actually characterizes the 2D space of possible
steps you might take. These same ideas are expressed more formally in differential geometry, as
follows. One can attach to every point p of a differentiable manifold M (a generalized surface)
a tangent space TpM (the compass plus some algebra describing vector operations). That is,
the tangent space is a real vector space that contains the possible directions in which one can
tangentially pass through p ∈ M . If the manifold is connected, then the tangent space has, at
every point, the same dimension as the manifold. So, if the manifold is a 2D surface, the tangent
space at a point is a plane. In general, this tangent plane "approximates" the surface only locally.

The elements X⃗p of the tangent space TpM at p are called tangent vectors at p. Attached to
a point on the surface, as above, these tangent vectors define the directions in which one could
walk away from the point. But modern differential geometry provides another interpretation:
it is possible to think of the elements of the tangent space in terms of directional derivatives.
Technically, for every smooth function f , Xf(p) = X⃗p ·∇f(p) will denote the directional derivative
of f in the direction of the vector X⃗p, with ∇ denoting the gradient vector (expressed in an
appropriate coordinate system) and · scalar product between these vectors. We will also denote
Xp = X⃗p · ∇p, omitting the function f .
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We now consider pairs of directional derivatives X and Y . If X and Y are partial derivatives,
for every regular function f one has XY f = Y Xf. If X and Y are directional derivatives, in
general XY f ̸= Y Xf. Explicit computation tell us that at every point p

[X,Y ]f(p) = (XY − Y X)f(p) = (JY⃗p
X⃗p − JX⃗p

Y⃗p) · ∇f(p),

with JX⃗p
and JY⃗p

Jacobian matrices of X⃗p and Y⃗p. The quantity [X,Y ]f is called commutator
since it expresses the fact that the two derivatives do not commute. The same notion can be
expressed in terms of increments: one might visualize an increment from a point p as the head of
a vector X⃗p applied at the point p. Then the expression XY − Y X will be geometrically obtained
as follows: place X down at a point, then the other Y at its head, then the first one backward
finally the second one backward. The issue is whether the quadrilateral is closed. Formally this is
captured by the commutator of two elements X and Y at the point p.

In order to compute the second derivative XY f , we need to know Y f at every point near p.
This lead to the more general notion of vector fields, which are abstractions of the velocity field of
points moving in the manifold. A vector field X attaches to every point p of the manifold M a
vector X⃗p from the tangent space at that point, in a smooth manner. There are no abrupt jumps
between points.

Since we related each tangent vector with a derivation above, we can now go further; see
Fig. A.1, images (A-C). Each vector field can be associated with an ordinary differential equation,
whose solutions are called integral curves of the vector field: they are parametric curves that
represent specific solutions to the ordinary differential equation depicted by the vector field. Think
of it as follows: imagine you are starting at a point, and take an infinitesmimal step in the direction
of a tangent vector at that point; you will now be at a neighboring point. So, again, you can take
a step from this neighboring point in (possibly) another tangent direction. Continuing this process
for a while, you geometrically trace out integral curves γ : [t1, t2] ⊆ R −→ M . Importantly, the
given vector field X at the point γ(t) is the tangent vector to the curve at that point. Importantly,
this holds true everywhere along the curve, so that the integral curve satisfies a differential
equation:

γ̇(t) = X⃗γ(t).

All the tangent spaces of a manifold may be "glued together" to form a new differentiable
manifold with twice the dimension of the original manifold, called the tangent bundle of the
manifold. As a set, it is given by the disjoint union of the tangent spaces of M , that is:

TM =
⊔
p∈M

TpM = {(p,Xp) | p ∈ M, Xp ∈ TpM} .

In particular, an element of TM can be thought of as a pair (p,Xp), where p is a point in M and
Xp is a tangent vector to M at p. There exists a natural projection π : TM → M defined by
π(p,Xp) = p. which maps each element of the tangent space TpM to the single point p.

A.2. Group action on a manifold. The operation of adding (real) numbers has an important
algebraic structure, called a group. It requires, for example, that the sum of any two numbers is
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Figure A.1. (A) Tangent planes TpiM (darker planes) at points pi, i = 1, 2, 3 in
the manifold M . (B) Vector field X defined on M : to every point pi, i = 1, 2, 3

of the manifold M we have a vector X⃗pi
of the tangent space at that point. (C)

Integral curve γ associated with the vector field X starting from p1 ∈ M . (D)
Group action of the roto-translation group SE(2) on the manifold M (black
ellipse): first, the manifold is rotated through a rotation of angle θ obtaining
RθM , and then a translation is applied, moving the rotated manifold in space
realizing RθM + T . (E) Geometric set-up of the motion of a car moving on a
plane. (F)Sub-Riemannian formalization in SE(2). Tangent vector of the path is
constrained to be in the gray plane, span of X⃗1,p and X⃗2,p, admissible directions
of movement.

again a number; that there is an inverse operation "-"; and that there is an identity operation "0"
that is, adding to any number yields the same number.
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When a group G acts on a manifold (e.g. the real numbers, above), it means that each
of its elements performs a certain operation on all the elements of the manifold in a way
that is compatible with the manifold itself. More precisely, this action is described by a map
σ : G×M → M, (g, x) 7→ g · x which is the (left) group action of a group G on a smooth manifold
M , if the map σ is differentiable.

For example, we can take the bidimensional roto-translation group SE(2) = R2 × S1 and define
its action on a smooth manifold M ⊆ R2 following the group law: first we apply a rotation and
then a translation of the manifold itself. This is formalized through the map σ : SE(2)×M −→ M ,
σ(g, p) = (Rp+ q), with g = (q,R) ∈ SE(2), namely a point q ∈ R2 and R bidimensional rotation
of angle θ ∈ S1. A graphical example is shown in Figure A.1, image (D).

We are now ready to generalize these familiar ideas to cortical space, with its special position
× orientation structure, or to stereo space.

A.3. Sub-Riemannian geometry. A point constraint to move on a manifold, illustrated above,
dictates that one can move only along directions tangent to the manifold, since moving in the
normal direction would leave the manifold. This means that, for every point p, the set of admissible
directions of displacement coincides with the tangent plane TpM . In the presence of further
constraints, some tangent directions could be forbidden. This leads to introducing, at every point
p, the admissible tangent space Ap, which is the subspace of TpM of admissible directions of
movement. If the tangent space TpM has dimension n, the admissible tangent space Ap will have
dimension m ≤ n. Repeating the same construction for every point of the manifold, we call the
admissible tangent bundle the union of admissible tangent spaces at every point: A =

⊔
p∈M Ap.

If we introduce a scalar product on Ap, then we are able to define a norm on vectors with the
aim to measure the length of such vectors and the distance between points. The manifold with
these properties is usually called sub-Riemannian manifold, while manifolds where movements are
allowed in any direction are called Riemannian manifolds.

Let us explicitly note that while Riemannian geometry arises in presence of a physical constraints,
sub-Riemannian geometry arises in presence of differential constraints, as for example in the
description of the motion of vehicles. A car moves on a bidimensional plane, but it can only move
in its current direction or it can change its current orientation by rotating the steering wheel. These
are the admissible directions. Moreover, the car cannot move "sideways" (forbidden direction):
this prevents one from directly reaching any other direction while remaining in the initial position,
restricting the allowable motions to a simultaneous combination of the two admissible movements.
The trajectory described by the vehicle will therefore be a curve, whose tangent is constrained
to follow the two admissible directions. The formalization of this sub-Riemannian problem
takes place in SE(2), considering for every p ∈ SE(2) as admissible tangent space ApSE(2) the
subspace generated by the current direction X⃗1,p = (cos θ, sin θ, 0)T and the direction of rotation
X⃗2,p = (0, 0, 1)T . See Figure A.1, images (E-F).

Similarly, we can move from a retinotopic (x, y) position to another retinotopic position, (x′, y′),
moving "up" or "down" through orientation columns from θ to θ′, but we cannot reach θ′ from θ

maintaining the same initial position (running through the same orientation column): in order to
reach the "forbidden direction" we have to walk simultaneously through positions and orientations.
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This restriction of movement is what distinguishes a Euclidean (or Riemannian) geometry from a
sub-Riemannian geometry.

B. Proof of Proposition 3.1

In this appendix, we show ho to prove Proposition 3.1 using tools of differential geometry, and
in particular the concept of differential k−form.

B.1. Differential forms. A differential k-form on an n-dimensional smooth manifold M is any
multilinear function ω : TMk −→ R which takes as input k smooth vector fields and outputs a
scalar element, satisfying the antisymmetry property:

ω(X1, . . . , Xi, . . . , Xj , . . . , Xk) = −ω(X1, . . . , Xj , . . . , Xi, . . . , Xk),

with k ≤ n and k, n ∈ N.
In the special case where ω is a 1-form, it is worth noting that this is an element of the

dual space to TM (cotangent space): ω ∈ TM∗ ⇐⇒ ω : TM −→ R. If we have coordinates
(x1, . . . , xn) on M , we can express the 1-forms using the dual basis {dx1, . . . ,dxn} of TM∗:

ωp = f1(x̄1, . . . , x̄n) dx1 + . . .+ fn(x̄1, . . . , x̄n) dxn, with p = (x̄1, . . . , x̄n),

with fi scalar smooth functions.
Furthermore, it is possible to multiply via the wedge product ∧ a differential k-form, ω,

with a differential l- form, η, obtaining a differential k + l-form ω ∧ η. More precisely, we are
interested in the wedge product of 1-forms ω and η, where the wedge product can be computed
as: ω ∧ η(X,Y ) = ω(X)η(Y )− ω(Y )η(X), with X and Y vector fields on M .

B.2. Development of the proof.

Proposition B.1. The binocular interaction term OLOR can be associated with the cross product
of the left and right directions defined through (13), namely ω⋆

pL
and ω⋆

pR
of monocular simple

cells:
OLOR = ω⋆

pL
× ω⋆

pR
.

Proof. As noted in subsubsection 2.2.1, the output of simple cells (11) in SE(2) can then be locally
approximated as O(x, y, θ) = −X3,p(Iσ)(x, y) where Iσ is a smoothed version of I, obtained by
convolving it with a Gaussian kernel, the vector field

X3,p = − sin θ∂x + cos θ∂y,

with p = (x, y, θ) ∈ SE(2). Switching to the dual space, the action of simple cells induces a choice
of a 1-form separately on each cell:

ωp = − sin θ dx+ cos θ d y.

Accordingly, it is possible to re-write the binocular interaction term as:

OLOR = X3,pR
(IσR)(xR, y)X3,pL

(IσL)(xL, y).
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In the following, we will see that this binocular action can be described by a 2-form defined in
terms of the two 1-forms of monocular simple cells.

We will denote with the subscript R the quantities corresponding to the right monocular
structure, and we will use the subscript L for the left one. So, we define vR := (JIσR

X⃗3,pR
)X3,pR

using the Jacobian (differential) of the smoothed version of the image I, in such a way that we
have ωpR

(vR) = X3,pR
(IσR

) = (JIσR
X⃗3,pR

) since ωpR
(X3,pR

) = 1 and JIσR
X⃗3,pR

∈ R; the same
reasoning holds for the left structure. It is then possible to recast (B.2) in the retinal coordinates
as:

OLOR =ωpL
(vL)ωpR

(vR)

=ωpL
∧ ωpR

(vL, vR) + ωpR
(vL)ωpL

(vR)︸ ︷︷ ︸
=0

,

=ωpL
∧ ωpR

(vL, vR),

exploiting the properties of the wedge product and the left and right retinal coordinates.
The retinal coordinates can be expressed in terms of cyclopean coordinates (4) as xR = x− d

and xL = x+ d; then, the extended left and right 1-form can be written as:

ωpR
=− sin θR dx+ cos θR d y + sin θR d d

ωpL
=− sin θL dx+ cos θL d y − sin θL d d.

Taking advantage of the isomorphism provided by the Hodge star between vectors and 2-forms in
R3, we relate the exterior and the cross product, using above notations 1, in the following way:

⋆(ωpL
∧ ωpR

) = ω⋆
pL

× ω⋆
pR

,

from which it follows the thesis. □

Throughout the paper, to lighten the notation, we will call ωL = ωpL
and ωR = ωpR

.

B.2.1. Meaning of the mathematical objects. We conclude this section with a consideration on
the mathematical tools introduced and used in this setting, to understand how the mathematical
models proposed by Citti and Sarti, starting with [6], assign these different mathematical objects
to the physical cell, to its action , and to the result of its action.

Remark B.1. It is well known that an odd simple cell (selective for orientation) is activated as a
result of the presence of a stimulus to select its direction (tangent vector to the perceptual curve).
In this setting, the mathematical intuition behind the model proposed in [6] is to identify each
cell with a 1-differential form, which is an element of the cotangent space. Roughly speaking, this
differential form is able to grasp a vector that corresponds to the direction of the stimulus: this is
the result of the action of the cell. Formally, this vector will be an element of the tangent space,
and more precisely it will lay in the kernel of the 1-form. This vector space is then associated with
the action of the cell.

The same reasoning is applied to different families of cells in a series of papers ([8, 3, 1, 4])
even if these are characterized by distinct sub-Riemannian structures in various manifolds. The

1Using the notation ω⋆ we identify the vector whose components are the coefficients of the 1-form ω with respect
to the dual basis
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interested reader could refer to [7] for a review. Similarly, we have found the same geometrical
organization in the family of binocular cells.

Remark B.2. In this paper, we have dealt with binocular cells which are a combination of
monocular simple cells. To these coupled simple cells (one for the left and one for the right eye)
we formally associate a 2-differential form, the wedge product of the two monocular left and right
1-forms. This 2-form can grasp again a vector, lying in the kernel of this mathematical object,
identifying the three-dimensional stimulus direction. Thus, the same reasoning of Remark B.1
also applies here to the binocular family of cells.

Translating the results of Remark B.1 into different spaces, with different dimensions, it is then
possible to use the same mathematical objects to explain the behavior of families of different cells,
identifying geometrically the mathematical objects at the basis of the functionality of the family
of studied cells.

C. Change of variables

Let us recover the expression of the 1-forms ω̃L := UtL and ω̃R := UtR . Recall here the change
of variable (5): 

r1 = xc
d

r2 = yc
d

r3 = fc
d

,

and its differential: 
d r1 = c

d dx− cx
d2 d d

d r2 = c
d d y −

cy
d2 d d

d r3 = − fc
d2 d d

.

Writing the quantity UtL , defined in (25), in term of a 1-form in the variables (r1, r2, r3) we have:

ω̃L =− f sin θL d r1 + f cos θL d r2 + (xL sin θL − y cos θL) d r3.

Changing coordinates:

ω̃L =− f sin θL

( c

d
dx− cx

d2
d d

)
+ f cos θL

( c

d
d y − cy

d2
d d

)
+ (xL sin θL − y cos θL)

(
−fc

d2
d d

)
=
fc

d
(− sin θL dx+ cos θL d y − sin θL d d)

=
fc

d
ωL.

So, up to a scalar factor, we have that ω̃L = ωL in the variables (x, y, d). The same reasoning
holds for the right structure.
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