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1 Governing equations and solution method

Table 1: Symbols of the constants used in the study
symbol definition typical value/expression

constants

Pabs absolute pressure of the system 100MPa
α poro-elastic coefficient (Biot coefficient) of the mush 0.6, 0.9
φo porosity in the mush at initial steady state 0.3
χ pore gas volume fraction 0-0.3
Ks elastic bulk modulus of solid crystals 10GPa
Kl bulk modulus of pure magma 1Gpa
Kg bulk modulus of gas Pabs
Kpore bulk modulus of pore magma 1/(χ/Kg + (1− χ)/Kl)
Km drained bulk modulus of the mush (1− α)Ks

Ku undrained bulk modulus of the mush (1− α)Ks +
α2KsKpore

φoKs+(α−φo)Kpore

S poroelastic storage coefficient Ku+ 4
3µ

Km+ 4
3µ

α2

Ku−Km

γ factor governing poroelastic stress-pressure coupling Ku−Km

α(Ku+ 4
3µ)

A constant Ku

Ku+ 4
3µ

B constant Km

Km+ 4
3µ

βm volumetric thermal expansion coefficient of pure magma 5× 10−5/oC
βg volumetric thermal expansion coefficient of gas 1/T
βs volumetric thermal expansion coefficient of solid crystals not explicitly used
βpore volumetric thermal expansion coefficient of the pore χβg + (1− χ)βl
ηf viscosity of pore magma not explicitly used
κ permeability in the mush not explicitly used
µ instantaneous shear modulus of the host rock and the mush 1GPa
η viscosity of the mush ensemble not explicitly used
τrelax relaxation time not explicitly used
[l] characteristic length

√
τrelaxc < 10Km

ρf magma density not explicitly used
ρm crystalline matrix density not explicitly used
cf magma specific heat not explicitly used
cm crystalline matrix specific heat not explicitly used
δ dimensionless value δ ≡ cfρf/cmρm 1
c poro-elastic diffusivity not explicitly used
κT thermal diffusivity in much not explicitly used
R dimensionless value c/κT 100,∞
λP poroelastic skin depth

√
2c/ω not explicitly used

λT thermal skin depth
√

2κT /ω not explicitly used
∆ dimensionless value 0-2
De Deborah number ωη/µ 10−3 − 103

ω frequency for harmonic perturbations not explicitly used
DT background temperature gradient 0-500 ◦C/Km

variables σij stress tensor
εij strain tensor
ε volumetric strain
P pore pressure
ζ variation of fluid content
~q Darcy’s flow velocity
T temperature deviation from background value
T̂ (z) Fourier transform for temperature deivation
P̂ (z) Fourier transform for pressure
q̂(z) Fourier transform for fluid velocity
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Table 1 shows the values and varables in this study. The thermo-poro-viscoelastic constitutive relations
governing the deformation of the mush and the pore magma content are similar to Liao [2022]. The
strain-stress relations are [Cheng, 2016, Biot, 1941]

σ̇ij +
µ

η
σij =

µ

η
(Kmε− αP )I + 2µε̇ij + (Km −

2

3
µ)ε̇I − αṖ I −KmβsṪ I (1a)

ζ = αε+
α2

Ku −Km
P − (φβpore + (α− φ)βs)T (1b)

where the overhead dot · denotes partial derivative in time, I denotes identity matrix. σij and εij are
stress and strain tensors of the ensemble material, ε is the volumetric strain, P is the pore pressure, T is the
temperature variation from its reference value.ζ is the variation of fluid content, defined as the increment
of pore fluid volume per un-deformed volume of the mush. µ and η are the shear modulus and shear
viscosity of the crystalline framework, α is the Biot coefficient of poroelasticity, and φ is the porosity in
the mush. βs is the volumetric thermal expansion coefficient for the solid crystals. The thermal expansion
coefficient of the gas-rich pore magma βpore = (1 − χ)βm + χβg , where βg = 1/Tgas is the thermal
expansion coefficient of ideal gas. Ku and Km are the undrained and drained bulk moduli.

The equilibrium condition, Darcy’s law, mass conservation, and energy conservation are

∇ · σij = 0 (2a)

~q = − κ

ηf
∇P (2b)

∂ζ

∂t
+∇ · ~q = 0 (2c)

∂T

∂t
+

ρfcf
ρmcm

~q · ∇T − κT∇2T = 0 (2d)

where ~q is Darcy’s flow velocity (assumed to only have the vertical component), κ is the permeability
of the mush, ηf is magma viscosity. (ρf , cf ) and (ρm, cm) are the density and specific heat of the fluid
phase and of the whole mush ensemble, respectively.The value of ρf cf

ρmcm
goes not significantly change the

results and assume it to be 1 in the rest of the study. κT is the thermal diffusivity in the mush.
I consider a 1D problem where pressure and temperature perturbation at a given location (i.e., a mag-

matic lens) can be expressed as a smooth function in time, and observe how the perturbation propagate
up and down the mush column. A zeroth-order background state of the mush column consists of no melt
flows, balance between lithospheric stress and interior stress, and a linear temperature profile that has a
negative or zero gradient (i.e., uniform temperature of a temperature that decreases linearly with distance
from the bottom to top of the mush column). All terms in the equations (1) and (2) are linear, except for
the thermal advection (second term in Equation 2d), which I linearize to first-order using the background
temperature gradient. Cast the new linearized equations in frequency-domain using Fourier transform, I
find that the Fourier transforms for pressure, velocity, and temperature for all the 1-st order deviations
obey [Cheng, 2016, Liao, 2022]

iωP̂ − c∗P̂ ′′ = −γ∗iωσ̂zz + iω
βc
S∗
T̂ (3a)

q̂ = − κ

ηf
P̂ ′ (3b)

iωT̂ −DT q̂ = κT T̂
′′ (3c)

3



where the Fourier transform of vertical stress σ̂zz = −P̂o is uniform in space for an uni-axial column
loaded by pressure perturbation P̂o at the source (z = 0). The 0-th order (negative) background temper-
ature gradient is dT (0)/dz = −DT (with unit of oC/m). The effective thermal expansion coefficient βc
is constructed from volumetric expansion coefficients of both the gas-bearing fluid phase and the solid
phase (see Table 1). It is worth noting that the viscoelastic effect is incorporated by correspondence prin-
ciple: the Fourier transform of the governing equations are identical to their elastic counterparts with the
exception of shear modulus, which is replaced by a complex rigidity µ∗ (similar in concept to s-dependent
rigidity under Laplace transform )

µ∗ = µ
iωτrelax

1 + iωτrelax
(4)

where τrelax is the relaxation time. We can verify that when τrelax = ∞, the complex rigidity becomes
µ. The complex rigidity in turn leads to complex coefficients

γ∗ =
Ku −Km

α(Ku + 4
3µ
∗)

= γ
1 + iωτrelax
A+ iωτrelax

, S∗ =
Ku + 4

3µ
∗

Km + 4
3µ
∗

α2

Ku −Km
= S

A+ iωτrelax
B + iωτrelax

(5)

where

A ≡ Ku

Ku + 4
3µ
, B ≡ Km

Km + 4
3µ
, γ ≡ Ku −Km

α(Ku + 4
3µ)

, S ≡
Ku + 4

3µ

Km + 4
3µ

α2

Ku −Km
(6)

The first two relations in (3) can further lead to evolution of fluid velocity

iωq̂ − c∗q̂′′ = −c∗βciωT̂ ′ (7)

where the poroelastic diffusivity c is modified by viscoelastic relaxation to a complex value

c∗ =
κ

ηf

(Ku −Km)(Km + 4
3µ
∗)

α2(Ku + 4
3µ
∗)

= c

Km

Km+ 4
3µ

∗ + iωτ

Ku

Ku+ 4
3µ

∗ + iωτ
= c

B + iωτrelax
A+ iωτrelax

(8)

In the main text, a Deborah number De = ωτrelax, which becomes infinitely large when there is no
relaxation. We can verify that when De =∞, γ∗, c∗, S∗ all become real and recover the definition form
poroelastic theories.

1.1 Frequency-domain solution for a thermo-poroelastic mush with no thermal
diffusion

The effect of thermal mechanical coupling and their effect on perturbation propagation can be most clearly
seen in an simplified end-member case of thermal-poroelasticity with vanishing thermal diffusion and
viscous relaxation. With κT = 0, ωτrelax = ∞, (1) and (2) lead to the evolution for pressure, velocity,
and temperature perturbations

∂P

∂t
− c∂

2P

∂z2
=
βc
S

∂T

∂t
− γ ∂σzz

∂t
(9a)

q = − κ

ηf

∂P

∂z
(9b)

∂T

∂t
−DT q = 0 (9c)
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with the storage coefficient S and γ are determined by the poroelastic properties of the mush (see Table 1).
The system defined by (9) further results in a diffusion-advection equation for pressure

∂P

∂t
− c∂

2P

∂z2
+ cβcδDT

∂P

∂z
= −γ ∂σzz

∂t
(10)

The solution to (10) is the sum of the special solution−γσzz(t) and a general solution to the homogeneous
equation (with 0 on the RHS). The general solution is the superposition of waveform solutions eiωt+kz ,
with wavenumebr k determined by the dispersion relation

k2 − βcDT k −
iω

c
= 0 (11)

where DT ≥ 0 is the opposite of the background temperature gradient. A purely diffusive system (DT =
0) for poroelastic medium results in k2

P = iω/c, which corresponds to an e-folding decay length λP =√
2c/ω. With arbitrary value for DT , the solution for (11) is

kλP =
∆

2
±

√(
∆

2

)2

+ 2i (12)

where ∆ = βcDTλP is the dimensionless background thermal gradient normalized by the length scale
λP and temperature scale β−1

c . We can verify that when ∆ = 0, the diffusive endmember has kPλP =
±(1 + i). In a 1D boundary-less medium, the two wave-numbers prescribe the propagation of a signal
away from the source [Turcotte and Schubert, 2002]. The wavenumber with positive real part describes
’top-down’ propagation in the lower (z < 0) domain; the wavenumber with negative real part describes a
’bottom-up’ propagation from the source into the upper (z > 0) domain. For the given source perturbation
P (0) = Poe

iωt, and a fluid-loading boundary condition such that σzz(t) = −P (0, t), the amplitude
and wavenumber for each domain are determined. The governing equation (10) has frequency-domain
solution

P̂ (z)/Po = (1− γ)e∆z/2λP−
√

(∆/2)2+2i|z|/λP + γ (13)

which leads to time-domain solution P (z, t) = P̂ (z)eiωt. The frequency-domain solution for pressure
leads to frequency-domain solutions for temperature and fluid velocity that evolve according to (9), which
are

T̂ βc/PoS =
∆

2
i

(
∆

2
− z

|z|
√

(∆/2)2 + 2i

)
e∆z/2λP−

√
(∆/2)2+2i|z|/λP (14a)

q

ωλP
/PoS = −1

2

(
∆

2
− z

|z|
√

(∆/2)2 + 2i

)
e∆z/2λP−

√
(∆/2)2+2i|z|/λP (14b)

where β−1
c , S−1, and ωλP arise naturally as scales for temperature, pressure and velocity.

1.2 Frequency-domain solutions with full thermo-poro-viscoelastic rheology
The frequency-domain solutions for a fully thermo-poro-viscoelastic mush column with finite viscoealstic
relaxation and thermal diffusivity obey the evolution equations (3) and can be expressed as

P̂ (ω) = γ∗P̂o(ω) + ΣP̂ke
kz (15a)

T̂ (ω) = ΣkT̂ke
kz (15b)

q̂(ω) = Σkq̂ke
kz (15c)
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with boundary conditions

ΣkP̂k(ω, k) = P̂o(ω)(1− γ∗) (16a)

ΣkT̂k(ω, k) = T̂o (16b)

where T̂o is the Fourier amplitude of temperature perturbation at 0. Substituting the wavenumber decom-
position into the evolution of momentum and energy equationiω − c∗k2 − βc

S∗ iω 0
κ
ηf
k 0 1

0 iω − κT k2 −DT

P̂kT̂k
q̂k

 = 0 (17)

1.2.1 Dispersion relation for propagation of harmonic signals

For a system perturbed by harmonic signals, the poroelastic skin depth λP and frequency ω naturally
arise as length and time scales, as shown in section §1.1. I retain these scales for the general case where
thermal diffusion and viscolastic relaxation are present, and re-express (17) asi− 1

2
B+iDe
A+iDe (kλP )2 −B+iDe

A+iDe i 0
1
2∆(kλP ) i− 1

2R (kλP )2 0
1
2kλP 0 1

 P̂kS

T̂kβc
q̂k/ωλP

 = 0 (18)

where ∆ = βcDTλP , De = ωτrelax, R = c/κT . The above relation results in the dispersion relation for
a single frequency(

k2λ2
P − 2i

A+ iDe

B + iDe

)(κT
c
k2λ2

P − 2i
)

+ 2i (βcDTλP ) kλP = 0 (19)

We can verify that when there is no relaxation τrelax = ∞ and no thermal diffusion κT = 0, the
dispersion relation (19) recovers the end-member case (11).

With a finite thermal diffusivity, there are four wavenumbers (named k1, k2, k3, k4). Among the four
wavenumbers, two wavenumebrs (k2, k3) that are deviations from the poroelastic endmembers, hence
are the main contributing waves driving pressure propagation; two other wavenumbers (k1, k4) deviate
from the thermal diffusion endmember case. Consider an unbound mush column with implicit boundary
condition that any perturbation originating from z = 0 eventually vanish at z = ±0, we can further find
that the wavenumbers with positive real parts (k1, k2) reside in the lower domain z < 0 determining
the top-down propagations; wavenumers (k3, k3) have negative real values, hence can only reside in
the z > 0 domain, determining bottom-up propagations. For the endmember with no thermal-mechanical
coupling ∆ = 0, wavenumbers k1 and k4 are symmetric, each having a real part corredponding to a decay
length equivalent to the thermal diffusion skin depth λT =

√
2κT /ω = λP /

√
R; the wavenumbers k2

and k3 also describe symmetric propagation away from z = 0, each defining a decay length equivalent
to the poroelastic diffusion skin depth λP =

√
2c/ω. With ∆ 6= 0, the wavenumbers deviate from

their endmembers with decay length 1/Re(ki)(i = 1, 2, 3, 4) deviating from the thermal-and-poroelastic
diffusion skin depths, which are shown in the main text.

1.2.2 Dispersion relation for broadband input

As shown in previous sections, the skin depth λP (ω) and frequency ω were chosen as length and time
scales for a mush column subjecting to harmonic perturbations. When the perturbations are broadband
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containing multiple frequencies (hence multiple values for λP ), new characteristic scales are required
to ensure consistency across all frequency components. For the case of broadband perturbations, the
diffusive length and time timescales are determined by the poroelastic diffusivity, the pressure/stress
scale is determined by the poroelastic storage coefficient S, and a temperature scale is determined by the
effective thermal expansion coefficient βc:

[l]2 = c[t], [P ] = 1/S, [T ] = 1/βc

These scales are not frequency dependent, hence persist for different frequency inputs. For a system with
viscoelastic relaxation, the (Maxwell) relaxation time τrelax is chosen as the timescale, which defines the
length scale as [l] =

√
cτrelax. Nondimensionalization of (17) leads toiω − k2BD+iω

AD+iω −BD+iω
AD+iω iω 0

k 0 1
0 iω − 1

Rk
2 −∆

P̂kT̂k
q̂k

 = 0 (20)

where I introduce an additional factor D, which has the binary value of 0 or 1, indicating if the system
has viscoelastic relaxation (i.e., if D = 0 there is no viscoelastic relaxation and length scale is arbitrarily
chosen). While ∆ was defined using the skin depth in the harmonic perturbation case, here it is defined
using the new length scale

∆ =
DT

[T ]/[l]
= DTβc[l] (21)

The dispersion relation resulting from (20) becomes

(k2 − AD + iω

BD + iω
ωi)(k2 −Rωi) + ∆Riωk = 0 (22)

For gas-bearing magma, the temperature scale (1/βc) >> 1000oC (with maximum thermal expansion
coefficient and minimum temperature scale corresponding to ideal gas). Realistically, the relevant length-
scale for a crustal mush column is no more than 10 km, which I assume to set the upper boundary of the
lengthscale [l]. The thermal gradient constructed by [T ] and [l] therefore has lower bound [T ]/[l] >>
100oC/km. Considering a crustal mush column with a background temperature gradient DT to be no
more than several hundreds oC/km, O(∆) < 1 and a maximum value of 2 for ∆ is assumed in the main
text. The dispersion relation, similar to the harmonic perturbation case, predicts four wavenumbers for
each frequency ω, with k1,2 in the upper domain and k3,4 in lower domain.

1.2.3 Derivation for solution in frequency space

Under Fourier transform, an arbitrary function in time and space is expressed as

f(t, z) =

∫ ∞
−∞

f̂ω(z)eiωtdω (23)

where f̂ω(z) is the Fourier transform of f(z, t) in the frequency domain. In this section I show the
derivation for the Fourier transforms for pressure P̂ω(z), velocity q̂ω(z) and temperature T̂ω(z) at any
target location z under specific boundary conditions and the dispersion relation obtained in the previous
section. The boundary conditions consist of complex amplitudes for pressure and temperature P̂ oω, T̂

o
ω at

the source z = 0, which are the Fourier transforms of the time sequences of pressure input Po(t) and
temperature input To(t).
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As shown in the previous section, there are two wave numbers in each domain, with undetermined
amplitudes. The dimensionless solutions for the Fourier transforms therefore can be expressed as

T̂ω = T̂ω,1e
k1z + T̂ω,2e

k2z, P̂ω = γ
D + iω

AD + iω
P̂ oω + P̂ω,1e

k1z + P̂ω,2e
k2z (for z >= 0) (24a)

T̂ω = T̂ω,1e
k3z + T̂ω,2e

k4z, P̂ω = γ
D + iω

AD + iω
P̂ oω + P̂ω,1e

k3z + P̂ω,2e
k4z (for z <= 0) (24b)

where ki(i = 1, 2, 3, 4) are obtained for ω according to (22). Below I show the method for calculating
P̂ω,i and T̂ω,i (i=1,2,3,4).

If ∆ = 0 the wavenumers are the ones for poroelastic diffusion k2
2,3 = AD+iω

BD+iω iω and thermal diffu-
sion k2

1,4 = Rωi. The boundary conditions lead to

T̂ω,2 = T̂ω,3 = 0, T̂ω,1 = T̂ω,4 = T̂ oω (25a)

P̂ω,1 =
BD+iω
AD+iω

1−RBD+iω
AD+iω

T̂ω,1, P̂ω,2 = P̂ oω(1− γ D + iω

AD + iω
)− P̂ω,1 (25b)

P̂ω,4 =
BD+iω
AD+iω

1−RBD+iω
AD+iω

T̂ω,4, P̂3 = P̂ oω(1− γ D + iω

AD + iω
)− P̂ω,4 (25c)

When ∆ 6= 0, the boundary conditions can be expressed as
iω−k21/R
−∆k1

iω−k22/R
−∆k2

0 0

1 1 0 0

0 0
iω−k23/R
−∆k3

iω−k24/R
−∆k4

0 0 1 1



T̂ω,1
T̂ω,2
T̂ω,3
T̂ω,4

 =


P̂ oω

(
1− γ D+iω

AD+iω

)
T̂ oω

P̂ oω

(
1− γ D+iω

AD+iω

)
T̂ oω

 (26)

Solving the above equation yields amplitudes T̂ω,i (i=1,2,3,4). The amplitudes P̂ω,i =
iω−k2i /R
−∆ki

T̂ω,i

and the amplitudes for Darcy’s velocity q̂i = −kiP̂ω,i =
iω−k2i /R

∆ T̂ω,i. The complex amplitudes are
summed up according to (24) and result in the final frequency domain solutions P̂ω, T̂ω, q̂ω .

The above solution scheme applies for broadband source perturbations in pressure and temperature,
and one example is shown where the perturbation is only in pressure that evolves as a step function. The
time-domain solutions are solved numerically with Fast Fourier Transform, and the input time sequence in
pressure is approximated by a square wave for numerical convenience. The numerical Fourier transform
and inverse Fourier transforms by Aguilera [2022] are implemented. It is worth noting that to compute
the output time sequences, the frequency content for ω 6= 0 is discarded in the numerical scheme but is
added by imposing a zero pressure/velocity initial condition for z > 0.
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