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Numerical simulations

Throughout the main text, we use data from numerical simulations of the
network model described by

dθi =[F (θi) + Z(θi)
N∑
j=1

aijg(θj) +
ε2

2
Z(θi)Z

′(θi)]dt...

+ Z(θi) [ηdt+ εdWi,t]︸ ︷︷ ︸
Ii(t)dt

(1)

where F (θi) = 1 + cos(2πθi), Z(θi) = 1− cos(2πθi) and

g(θj) =

{
d
(
b2 −

[(
θi + 1

2

)
mod 1− 1

2

]2)3
; θi ∈ [−b, b]

0 ; else.

All simulations were implemented using a standard Euleur-Maruyama solver
with time-steps of 0.005 time-units. We found that using smaller time-steps
did not alter our results. The solver was developed using the Python/Cython
programming language using the Mersenne Twister random number genera-
tor and post-processing (spike binning and empirical noise entropy estimates)
was carried out in MATLAB. Large simulations were performed on the NSF
XSEDE Science Gateways supercomputing platform.
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Figure 1: Estimates of Lyapunov exponents for the initial 50 out of 5000
time-units, showing convergence. (a) Estimates of the first 60 Lyapunov
exponents (out of 500) for a given network. (b) Three distinct estimates
for λ1, λ25 and λ50 where network IC, I and coupling matrix A are selected
differently and at random. For both panels, N = 500, ε = 0.5, η = −0.5.

Lyapunov spectrum estimates

Although the Lyapunov exponents λ1 ≥ λ2 ≥ ... ≥ λN of (1) do not depend
on a particular choice of I or initial conditions (IC), computing them an-
alytically is a very hard, if not an impossible, problem. Therefore, we use
numerical estimates. While numerically integrating a solution of (1) above,
we simultaneously evolve the linear variational equation

Ṁ = J(t)M (2)

where J(t) is the Jacobian of (1) evaluated along the simulated trajectory.
Here, M is a N by N matrix where M(0) is the identity. M(t) is orthonor-
malized at each time-step and the growth factors of each orthogonal vector
obtained from the process are extracted to build estimates that converge to-
ward the λi’s, as described in [2]. This process was repeated for ten random
choices of the input I and the initial states; trajectories were integrated for
5000 time-units. We verified that all reported λi’s have a standard error less
than 0.002 using the method of batched means [1] (batch size of 100 time-
units). Figure 1 (a) shows converging estimates of the first 60 Lyapunov
exponents over the initial 50 time-units.

In addition, we find that distinct realizations of connectivity matrix A =
{aij} did not significantly affect the Lyapunov exponent estimates — and

2



hence the sum of all positive ones leading to the Kolmogorov-Sinai entropy
hµ. To illustrate this, Figure 1 (b) shows estimates of three λi’s for three
distinct systems, where input choice I, IC and A are all different.
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