1. Barnes, P.J., K.F. Chung, and C.P. Page, Inflammatory mediators of
asthma: an update. Pharmacological reviews, 1998. 50(4): p. 515-
596.
2. Schwartz, D.A., Does inhalation of endotoxin cause asthma?
American journal of respiratory and critical care medicine, 2001.
163(2): p. 305.
3. Michel, O., Role of lipopolysaccharide (LPS) in asthma and other
pulmonary conditions. Journal of Endotoxin Research, 2003. 9(5): p.
293.
4. Wheeldon, E., et al., Intratracheal aerosolization of endotoxin in the
rat: a model of the adult respiratory distress syndrome (ARDS).
Laboratory animals, 1992. 26(1): p. 29.
5. Khare, C.P., Indian medicinal plants: an illustrated dictionary.
2007: Springer Verlag.
6. Kirtikar, K.R., et al., Indian Medicinal Plants. 1980: Bishen Singh,
Mahendra Pal Singh.
7. Chitra, M., et al., Antitumor, anti-inflammatory and analgesic
property of embelin, a plant product. Chemotherapy, 1994. 40(2): p.
109-113.
8. Mahendran, S., S. Badami, and V. Maithili, Evaluation of
antidiabetic effect of embelin from Embelia ribes in alloxan induced
diabetes in rats. Biomedicine & Preventive Nutrition, 2011. 1(1): p.
25-31.
9. Mahendran, S., et al., Anticonvulsant activity of embelin isolated
from Embelia ribes. Phytomedicine, 2011. 18(2): p. 186-188.
10. Bhandari, U., M.N. Ansari, and F. Islam, Cardioprotective effect of
aqueous extract of Embelia ribes Burm fruits against isoproterenolinduced
myocardial infarction in albino rats. Indian journal of
experimental biology, 2008. 46(1): p. 35.
11. Joshi, R., J. Kamat, and T. Mukherjee, Free radical scavenging
reactions and antioxidant activity of embelin: Biochemical and pulse
radiolytic studies. Chemico-biological interactions, 2007. 167(2): p.
125-134.
12. Nikolovska-Coleska, Z., et al., Discovery of embelin as a cellpermeable,
small-molecular weight inhibitor of XIAP through
structure-based computational screening of a traditional herbal
medicine three-dimensional structure database. Journal of medicinal
chemistry, 2004. 47(10): p. 2430-2440.
13. Spond, J., et al., Comparison of PDE 4 Inhibitors, Rolipram and SB
207499 (ArifloTM, in a Rat Model of Pulmonary Neutrophilia* 1.
Pulmonary Pharmacology & Therapeutics, 2001. 14(2): p. 157-164.
14. Bradley, P.P., R.D. Christensen, and G. Rothstein, Cellular and
extracellular myeloperoxidase in pyogenic inflammation. Blood,
1982. 60(3): p. 618.
15. Leza, J.C., et al., The effects of stress on homeostasis in JCR-LA-cp
rats: the role of nitric oxide. Journal of Pharmacology and
Experimental Therapeutics, 1998. 286(3): p. 1397.
16. Lowry, O., et al., Protein estimation with the Folin phenol reagent. J
Biol Chem, 1951. 193: p. 265-275.
17. Doumas, B. and H. Biggs, Estimation of albumin in serum. Standard
Methods. Clin. Chem, 1972. 7: p. 175-188.
18. O'Byrne, P.M., M.D. Inman, and E. Adelroth, Reassessing the Th2
cytokine basis of asthma. Trends in pharmacological sciences, 2004.
25(5): p. 244-248.
19. Bochner, B.S., Adhesion molecules as therapeutic targets.
Immunology and allergy clinics of North America, 2004. 24(4): p.
615-630.
20. Yang, R.B., et al., Toll-like receptor-2 mediates lipopolysaccharideinduced
cellular signalling. Nature, 1998. 395(6699): p. 284-288.
21. Ohkawara, Y., et al., Human lung mast cells and pulmonary
macrophages produce tumor necrosis factor-alpha in sensitized lung
tissue after IgE receptor triggering. American journal of respiratory
cell and molecular biology, 1992. 7(4): p. 385.
22. Finotto, S., et al., TNF-alpha production by eosinophils in upper
airways inflammation (nasal polyposis). The Journal of
Immunology, 1994. 153(5): p. 2278.
23. Abdelaziz, M., et al., The effect of conditioned medium from
cultured human bronchial epithelial cells on eosinophil and
neutrophil chemotaxis and adherence in vitro. American journal of
respiratory cell and molecular biology, 1995. 13(6): p. 728.
24. Bodey, K., et al., Cytokine profiles of BAL T cells and T cell clones
obtained from human asthmatic airways after local allergen
challenge. Allergy, 1999. 54(10): p. 1083-1093.
25. Kips, J., J. Tavernier, and R. Pauwels, Tumor necrosis factor causes
bronchial hyperresponsiveness in rats. The American review of
respiratory disease, 1992. 145(2 Pt 1): p. 332.
26. Lefort, J., et al., Systemic administration of endotoxin induces
bronchopulmonary hyperreactivity dissociated from TNF- formation
and neutrophil sequestration into the murine lungs. The Journal of
Immunology, 1998. 161(1): p. 474.
27. Cavarra, E., et al., Neutrophil recruitment into the lungs is
associated with increased lung elastase burden, decreased lung
elastin, and emphysema in 1 proteinase inhibitor-deficient mice.
Laboratory investigation, 1996. 75(2): p. 273-280.
28. Corteling, R., D. Wyss, and A. Trifilieff, In vivo models of lung
neutrophil activation. Comparison of mice and hamsters. BMC
pharmacology, 2002. 2(1): p. 1.
29. Asti, C., et al., Lipopolysaccharide-induced Lung Injury in Mice. I.
Concomitant Evaluation of Inflammatory Cells and Haemorrhagic
Lung Damage* 1. Pulmonary Pharmacology & Therapeutics, 2000.
13(2): p. 61-69.
30. Barnes, P.J. and M. Belvisi, Nitric oxide and lung disease. Thorax,
1993. 48(10): p. 1034-1043.
31. Taylor-Robinson, A.W., et al., The role of TH1 and TH2 cells in a
rodent malaria infection. Science, 1993. 260(5116): p. 1931-1934.
32. Colasanti, M., et al., Human ramified microglial cells produce nitric
oxide upon Escherichia coli lipopolysaccharide and tumor necrosis
factor [alpha] stimulation. Neuroscience letters, 1995. 200(2): p.
144-146.
33. Kwak, H.J., et al., Roflumilast inhibits lipopolysaccharide-induced
inflammatory mediators via suppression of nuclear factor-κB, p38
mitogen-activated protein kinase, and c-Jun NH2-terminal kinase
activation. Journal of Pharmacology and Experimental Therapeutics,
2005. 315(3): p. 1188-1195.