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Targeting the circadian
modulation: novel therapeutic
approaches in the management
of ASD
Yuxing Zhang1,2, Yinan Chen1, Wu Li1, Liya Tang1,
Jiangshan Li1* and Xiang Feng1*

1School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha,
Hunan, China, 2McGovern Medical School, The University of Texas Health Science Center at Houston,
Houston, TX, United States
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly

in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a

strong correlation between ASD and circadian disruption, suggesting that

modulation of circadian rhythms and the clocks could yield satisfactory

advancements. Research indicates that circadian dysfunction associated with

abnormal neurodevelopmental phenotypes in ASD individuals, potentially

contribute to synapse plasticity disruption. Therefore, targeting circadian

rhythms may emerge as a key therapeutic approach. In this study, we did a

brief review of the mammalian circadian clock, and the correlation between the

circadian mechanism and the pathology of ASD at multiple levels. In addition, we

highlight that circadian is the target or modulator to participate in the therapeutic

approaches in the management of ASD, such as phototherapy, melatonin,

modulating circadian components, natural compounds, and chronotherapies.

A deep understanding of the circadian clock’s regulatory role in the

neurodevelopmental phenotypes in ASD may inspire novel strategies for

improving ASD treatment.
KEYWORDS

circadian clock, neurodevelopmental disorders, autism spectrum disorder, therapeutic
approaches, chronotherapies
Introduction

Autism spectrum disorder (ASD) is a cluster of early neurodevelopmental conditions

characterized by deficits in social communication, repetitive and stereotyped behaviors, as

well as atypical sensory processing (1, 2). The latest Global Burden of Disease Study (GBD)

reports that ASD diagnoses have increased significantly in recent decades in many

countries, including China, with a global prevalence estimated at 1.2% to 2% (3, 4). This

increase is largely attributable to changes in the diagnostic criteria for ASD, including their
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broadening, as well as enhanced public awareness and improved

recognition of the disorder by healthcare professionals. Individuals

with ASD may experience barriers to social interaction, economic

activity, and well-being (5). The impacts exhibit varying

magnitudes, encompassing but not limited to effects on

educational and professional accomplishments, mental well-being,

familial and societal roles (6, 7). ASD often imposes a substantial

familial and socioeconomic burden, necessitating the provision of

assistance to adults who lack independent functioning. This leads to

escalated healthcare and educational expenses, as well as financial

losses for caregivers (8).

Over the past eight decades, neuroscientists and clinicians have

been captivated by various aspects of ASD, including risk factors,

diagnostic criteria, therapeutic options, mechanistic studies,

genomic patterning investigations, and societal influences.

Currently, there are various treatment strategies for ASD, which

can be broadly divided into two types, nonpharmacological

treatment and pharmacological treatment (9, 10). The primary

focus of nonpharmacological approaches lies in the early

implementation of intensive behavioral intervention, with Applied

Behavior Analysis (ABA) serving as the central area of interest and

encompassing various iterations (11). In addition to ABA, current

treatment strategies also include therapies targeting specific

symptoms, such as occupational therapy and speech and language

therapy. Moreover, a variety of pharmacological interventions,

including guanfacine, SSRIs, stimulants, and anti-anxiety

treatments, are employed to manage specific symptoms associated

with ASD. Several randomized controlled trials indicated that low-

intensity interventions from parents, including establishment of

joint engagement, shared attention, and balanced play, which

encourage children to take more initiative contribute to better

social behavior and communication (12). While the results of

other studies on low-intensity interventions are not satisfactory,

this may be related to individual differences (13, 14), strategies that

for most children may not be effective for every child.

Unfortunately, the lack of molecular target hinders the

development of new drugs for autism. Therefore, formulating

strategies to regulate or even block the processes involving key

signal molecule transduction, epigenetics, and molecular

modification in the pathogenesis of autism is a crucial

research direction.

Circadian rhythms, universally recognized as essential for

maintaining overall health, are driven by the internal master

clock through circadian transcriptional-translational feedback

loops (TTFLs).These loops are composed of CLOCK(Circadian

locomotor output cycles kaput or NPAS2)–BMAL1 (brain and

muscle ARNT-like protein 1, also called MOP3) transcriptional

activators and CRY(cryptochrome)–PER(period) transcriptional

repressors (15, 16). Considerable research has focused on the
Abbreviations: BMAL1, Brain and muscle Arnt-like protein 1; CBT, Core body

temperature; CRY, Cryptochrome; FRP, Free-running period; KSS, Karolinska

Sleepiness Scale; IGF, Impaired fasting glucose; LD, Light/dark; PER, Period;

PVT, Psychomotor vigilance task; ROR, Retinoic acid receptor-related orphan

receptor; SCN, Suprachiasmatic nucleus.
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effects of circadian disruption during neurodevelopment. The

circadian clock is widely involved in regulating synaptic function,

neuronal activity, and behavior. Growing basic and clinical evidence

have proved that the disruption of the circadian rhythm may be

related to the clinical manifestations of ASD and its pathogenesis

(17). Sleep issues may vary among different subtypes and

individuals diagnosed with ASD, a significant majority of 50 to

80% of children with ASD experience sleep difficulties, in contrast

to the prevalence of less than 30% observed in the general pediatric

population (18). Molecularly, mouse mutants with altered clock

genes display autistic-like behavior, and dysfunction of circadian

molecular marker melatonin contributes to the acceleration of

pathogenesis of ASD (19–21). Structurally, the total proteins, size,

and number of synapses follow a sleep-wake cycle, and the synaptic

mRNA and phosphorylation of synaptic proteins in a time-

dependent manner (22–24). All this evidence demonstrates that

circadian rhythm are involved in the progression of ASD,

supporting that targeting the circadian modulation may be a

novel therapeutic approach in the management of ASD. Thus, we

primarily review and discuss therapeutic approaches based on the

pathological characteristics and circadian signal transduction in

ASD at multiple levels, aiming to explore novel strategies for

enhancing ASD treatment.
Components and functions of
mammalian circadian clock

Mammalian circadian physiology is based on hierarchical

networks of central and peripheral oscillators. The suprachiasmatic

nucleus (SCN) of the hypothalamus, comprising over 20,000

neurons, serves as the primary central pacemaker (25), while also

engaging in interactions with peripheral circadian clocks, including

those in the heart, lung, liver, stomach, and pancreas (26).

Specifically, photosensitive retinal ganglion cells (ipRGCs)

containing melanopsin receive external information regarding

circadian rhythmic non-visual irradiance, and subsequently

transmit this integrated sensory input through various

neurotransmitters and hormonal pathways (neurotransmitters

involved in light communication, including glutamate, Pituitary

Adenylate Cyclase Activating Polypeptide (PACAP), and

substance P) and/or neurons (retinohypothalamic tract afferents,

RHT) to ventral retinal receptor SCN neurons and peripheral organs

and tissues (27) (Figure 1).

Molecularly, the Clock and Bmal1 heterodimer translocate to

the nucleus where it binds to the enhancer E-box (5′-CACGTG-3′),
thereby promoting the expression of PER1, PER2, PER3, CRY1 and

CRY2. Conversely, the accumulated Pers and Crys are transported

into the nucleus, thereby suppressing the transcriptional activities of

CLOCK and BMAL1 mRNA. Subsequent degradation of Per/Cry

protein initiates a new cycle of transcriptional activation for CLOCK

and BMAL1, with a duration of approximately 24 hours (28). In the

secondary stabilization loop, Clock/Bmal1 heterodimer drive the

expression of genes encoding the reverse erythroblastosis virus

(REV-ERBs, REV-ERBa/b) and retinoic acid-related orphan

nuclear receptors (RORs, RORa/b/g), which respectively repress
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and activate transcription of BMAL1 and other clock genes, by

binding to the response elements for RORs (RORE) on the

promoters (29). Furthermore, the PAR-bZip family of circadian

transcription factors, including D-box binding protein (DBP), TEF,

and HLF, competes with nuclear factor interleukin 3 (NFIL3 or

E4BP4) to exert regulatory control over clock-controlled gene

expression from D-box-containing promoters (30, 31). In

addition, different posttranslational modifications partially govern

the circadian process. For example, the stabilization of Per family

protein relies on the casein kinase 1 (CK1, e.g., CK1a, CKIe), which
phosphorylates Per, Cry family protein undergo phosphorylation

and degeneration (32–34).

Mutations in these genes result in behavioral and physiological

dysfunction, as well as alterations in the period, phase, and

circadian rhythm. Interestingly, circadian disruption and poor

sleep quality are prevalent in neurodevelopmental disorders,

including ASD. Individuals with ASD are relatively common and

have been linked to various biomarkers of circadian disruption,

such as misaligned cortisol rhythms and lower-amplitude
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melatonin rhythms (17, 35, 36). What’s more, mutant circadian

genes in mice contribute to autistic-like behaviors, some research

has reported Bmal1 mutant mice exhibit impaired social interaction

and increased anxiety (18, 37). Therefore, in this research, we will

investigate the role of circadian physiology in neurodevelopmental

processes, provide a comprehensive overview of existing evidence

which suggests underlying connections between the circadian and

ASD, aiming to explore the novel therapeutic approaches in the

management of ASD.
Links between circadian and ASD

The circadian clock orchestrates a multitude of physiological

processes and governs circadian rhythms, such as sleep-wake cycle,

by providing timing information for regulation through intricate

interactions of endogenous mechanisms and neurohormones (38,

39). When discussing the links between circadian and ASD, several

crucial factors must be considered: firstly, the intricate regulatory
FIGURE 1

Both the master circadian clock and peripheral clock are regulated by complex and precise molecular mechanisms. The transmission of light triggers
the activation of the circadian pacemaker SCN, thereby synchronizing the peripheral clock with the master clock. The coordination of arousal
stimulation with the central clock orchestrates the regulation of the body’s physiological processes. The core circadian clock genes Bmal1 and Clock
intricately orchestrate the expression of downstream related genes, thereby initiating the transcription process of Per, Cry, Rev-erb, and ROR
families. Conversely, Per and Cry infiltrate the nucleus to impede the transcriptional process of Bmal1 and Clock, thereby exerting varying degrees of
regulation on numerous physiological and pathological mechanisms governed by the circadian clock. This figure was created by the authors using
‘Blender’ and ‘Photoshop’.
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mechanisms of circadian clock genes; secondly, the effects of

inherent rhythmic variations within the circadian system itself;

thirdly, the broader implications of circadian regulation on sleep

patterns and associated physiological biomarkers should also be

incorporated into the analysis. It has been reported that mutations

in circadian genes in mice contribute to autistic-like behaviors.

Specifically, studies have shown that mutations in the BMAL1 gene

result in several behavioral and neurological anomalies. Affected

mice demonstrate impaired social interactions, increased anxiety,

immature dendritic spine morphology, enhanced excitatory and

inhibitory synaptic transmission, and reduced firing rates (18, 37).

Interestingly, synapses, the specialized junctions between

neurons, are fundamental units of brain function, facilitating

communication throughout the brain. ASD is typically diagnosed

within the first three years of life, a critical period of intense

synaptogenesis (40). Synaptic mRNA expression levels

demonstrate a circadian pattern, peaking during the initial phase

of waking (around dawn) or after mice fall asleep (around dusk).

This pattern is reflected in the daily fluctuations of a significant

proportion of coding proteins (12%) and over half of

phosphoproteins, which show peaks in abundance and

phosphorylation status at these key times (23, 24). The diurnal

fluctuations in levels of circadian clock proteins, influenced by the

time of day, show significant modifications in MT1/2−/− mice

compared to their wild-type counterparts. Furthermore, these

alterations enhanced spatial learning efficiency during daylight

hours (41). Additionally, the direct inhibition of cAMP response

element-binding protein (CREB) phosphorylation by G protein-

coupled receptors leads to a reduction in the expression of clock

proteins Per1 and Per2, thereby impairing the entrainment of the

circadian clock by light stimuli (42). In vivo, the rhythmic

manifestation of Per1 in the pars tuberalis was abolished

following pinealectomy, resulting in asynchronous manifestation

of Per1 and Per2 in the SCN (43, 44).

Sleep issues may vary among different subtypes and individuals

diagnosed with ASD, a significant majority of 50 to 80% of children

with ASD experience sleep difficulties, in contrast to the prevalence

of less than 30% observed in the general pediatric population (18).

The act of sleep plays a pivotal role in the intricate development and

maturation of neural pathways, therefore, insufficient sleep can have

a significant impact on children’s cognitive abilities, encompassing

attention span, memory retention, emotional regulation, and

behavioral patterns (45, 46). The development of circadian

rhythm sleep-wake disorders (CRSWDs) is influenced by genetic

variations in clock and melatonin pathway genes. Significant allelic

associations were observed between Polymorphisms of Per1 and

Neuronal PAS domain protein 2 (NPAS2) with ASD (47). Notably,

in a mouse model, the absence of Npas2–/– resulted in deficits in

complex emotional memory and played a crucial role in non-rapid

eye movement (REM) sleep homeostasis, leading to decreased total

sleep duration in male mice (48, 49). Male and female Shank3DC/DC

mice exhibited significantly reduced sleep duration compared to

their wild-type and Shank3WT/DC littermates shortly after weaning,

with a progressive increase in sleep fragmentation during

adolescence (50). Polysomnography (PSG) studies have revealed a
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decrease in rapid eye movement (REM) sleep, N2 non-rapid eye

movement (NREM) sleep, and lower slow wave sleep (SWS)

percentage and EEG sleep spindles among individuals with ASD,

while an increase in N1 NREM sleep, which indicating evident

indications of impaired sleep quality (51). It should note that the

detection of sleep parameters similar to those measured by PSG

have been confirmed in studies across different age groups of ASD

individuals, adolescents and young adults exhibit severe sleep-wake

phase disorder, characterized by longer sleep latency, and increased

time in bed (TIB) time, while longer sleep onset latency (SOL) and

wake after sleep onset (WASO) time (52). Additionally, participants

with ASD had significantly lower scores on adolescent sleep-wake

scale (ASWS) particularly in areas such as going to bed and falling

asleep. Sleep parameters derived from wrist actigraphy also showed

longer sleep latency and lower sleep efficiency in ASD

individuals (53).

Individuals diagnosed with ASD exhibit diminished levels of

melatonin and its primary metabolite, urinary methylmelatonin-6-

sulfate, as evidenced in urine, serum, and plasma samples (54). The

results of an in vitro study demonstrate that melatonin significantly

enhances the proliferation of neurospheres and cell viability of

induced pluripotent stem cells (iPSCs), while also promoting neural

differentiation. The efficient formation of memory and synaptic

plasticity heavily relies on the crucial factor of phosphorylating

CREB, which is widely recognized as the ‘memory molecule’ (55).

Interestingly, in MT1/2
−/− mice, there was a significant attenuation

in the overall amplitude of pCREB compared to WT mice, which

contributes to the changes of hippocampal LTP associated with

activity-dependent synaptic plasticity (41). Therefore, the

correction of melatonin levels through exogenous administration

represents a rational therapeutic strategy. Indeed, clinical evidence

have demonstrated the profound efficacy of melatonin therapy in

ameliorating disrupted sleep patterns in individuals with ASD (56,

57). However, further comprehensive investigations are warranted

to elucidate the precise impact of melatonin on synaptic

pathophysiology in ASD patients.
Circadian clocks govern the synapse
plasticity in ASD

As previously discussed, sleep disturbances, memory

impairments, and temporal dysregulation are all hallmark features

of ASD, while the regulation of sleep, memory, and timing is

governed by circadian clock genes in various species (58). De

novo loss-of-function variants have been detected in the clock

genes PER1, PER2, TIMELESS, BMAL1, and NPAS2 among

individuals with ASD (47, 59, 60). Multiple findings substantiate

the role of sleep in facilitating synaptic plasticity, including sleep-

mediated enhancement of learning and memory, accompanied by

electrophysiological and molecular alterations indicative of synaptic

remodeling (61–63). The impact of the sleep-wake cycle and

melatonin on synaptic efficacy has been directly assessed through

electrophysiological potentials and indirectly evaluated via

measurements of plasticity-related mRNAs or proteins, which can
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modulate synaptic potentiation or depression by altering post-

translational modification levels and concentrations (64).

Additionally, the circadian biomarker melatonin exhibits

neuroprotective properties (65), investigations conducted on the

rodent hippocampus have demonstrated that fluctuations in

melatonin levels exert a significant impact on synaptic plasticity

(66, 67), and long-term potentiation within this brain region

(41, 68).
Synapse formation and function are
underlying factors contributing to ASD

Synapses are specialized junctions between neurons that

facilitate communication and serve as fundamental units of brain

function. It is widely recognized that individuals with ASD are

typically diagnosed within the first three years of life, a period

marked by intense synaptogenesis (40). Alterations in most rare and

de novo genes, concentrated within specific biological pathways,

have varying impacts on synaptic plasticity and connectivity. These

pathways encompass the modulation of chromatin structure, the
Frontiers in Psychiatry 05
transcriptional process of genetic information, protein synthesis

and degradation, synaptic receptor regulation, cell adhesion

molecule function, scaffolding protein support, and actin filament

organization within cells (69). Specifically, neuronal activity

increases ubiquitin (Ub)–protein ligase E3A (UBE3A)

transcription and control the degradation of activity-regulated

cytoskeleton-associated protein (ARC) in individuals with ASD.

Other transcription factors encoded by ASD-risk genes, such as

TSC, FMRP and SHANK3 contribute to early brain development.

Additionally, the FMRP–EIF4E–CYFIP1 complex regulates the

translation of more than 1,000 genes, many of which are ASD-

risk genes. The mTOR and ERK pathways are often hyperactivated

in individuals with ASD, leading to increased protein synthesis and

abnormal synaptic plasticity, which contribute to the cognitive and

behavioral symptoms of the disorder. The alterations in synaptic

efficacy and subsequent changes in neuronal connections are

influenced by external stimuli, sensory input, and internal brain

activity through the modulation of synapse numbers (69, 70).

Before delving into the involvement of the circadian system in

synaptopathology pathogenesis, it is imperative to clarify ASD-

associated risk genes implicated in synaptopathies (Figure 2).
FIGURE 2

Common molecular mechanisms of developmental synaptopathies associated with ASD. 1)Neuronal activity enhances the transcription of UBE3A
and governs the development of excitatory synapses by regulating the degradation of ARC, a receptor that promotes AMPAR internalization in
synaptic proteins. The FMRP-EIF4E-CYFIP1 heterotrimer orchestrates the translational dynamics of synaptic mRNA, while its activity is intricately
modulated by neuronal stimuli via intricate signaling cascades involving mGluR1, TSC, and mTOR. Cell adhesion molecules, such as NRXNs and
NLGNs, along with Shank3 scaffolding proteins, play a pivotal role in bridging glutamate receptors and signaling pathways, exerting influence on
scaffolding proteins and the actin cytoskeleton at the postsynaptic density. AMPA-R, a-amino-3-hydroxy -5-methyl-4-isoxazolepropionic acid
receptor; mGluR, metabotropic glutamate receptor; NMDA-R, N-methyl-D-aspartate receptor; ARC, activity-regulated cytoskeleton -associated
protein; PSD95, postsynaptic density protein 95; SHANK3, SH3 and multiple ankyrin repeat domains 3; Ub, ubiquitin; UbE3A, ubiquitin protein ligase
E3A; FMRP, Fragile X Messenger Ribonucleoprotein; EIF4E, eukaryotic translation initiation 4E; CYFIP1, cytoplasmic FMRP–interacting protein 1;
RHEB, RAS homologue enriched in brain; TSC, Tuberous sclerosis complex; MEK, MAPK/ERK kinase; ERK, extracellular signal-regulated kinase. This
figure was created by the authors using ‘Photoshop’.
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Electrophysiological modulation of
synaptic function by circadian

The changes in the frequency of excitatory postsynaptic

potential slopes (EPSPs) reflect modifications in the presynaptic

component of synaptic transmission, while alterations in amplitude

indicate adjustments in the postsynaptic component (22). In 1984,

Hanada and Kawamura first reported the presence of a circadian

rhythm in both averaged postsynaptic and presynaptic evoked

responses in vivo, which exhibited independence from the state of

vigilance and could be abolished by bilateral SCN lesions (71, 72). In

subsequent in vitro studies, the persistence of the time-of-day effect

for extended durations in the ex vivo state strongly implies that the

hippocampus itself exhibits circadian properties in synaptic efficacy

(73–75). The parameters in the cerebral cortex of mice and rats

exhibit decreased values following a few hours of sleep, increased

values after a few hours of wakefulness, and demonstrate a decline

during recovery sleep subsequent to sleep deprivation (76). The

phenomenon of orientation-specific response potentiation (OSRP)

is considered an in vivo manifestation of long-term potentiation

(LTP) at glutamatergic synapses, resulting in an enhanced response

to a specific visual stimulus (77). The occurrence of OSRP is

specifically observed during the entrained circadian sleep phase

and further consolidated during post-stimulus sleep (78, 79). Given

that the impact of time of day on learning memory, and

hippocampal LTP in Light: Dark entrained conditions (74, 80),

subsequent investigations have reported decreased EPSPs in Bmal1

KO mice, indicating impaired long-term synaptic plasticity (81).

In MT1/2
−/− mice and WT-SCGX(wild-type mice that underwent

bilateral surgical removal of their superior cervical ganglia) mice, the

circadian pattern of LTP is abolished, which suggests that melatonin

significantly influences the circadian synaptic plasticity in mouse

hippocampus in the activity-dependent manner (41). The

administration of melatonin prior to the recording of patch-clamp

data exhibited a significant restoration of both the frequency and

amplitude of spontaneous EPSCs observed in hippocampal neurons

following sevoflurane (Sev) treatment (82). Additionally, melatonin

pretreatment significantly enhanced dendritic branching in pyramidal

neurons and upregulated the expression of synaptic scaffold proteins

(Homer, PSD-95) compared to Sev-treated mice (82). Chronic

melatonin treatment effectively restored LTP in Ts65Dn (TS) mice, a

Down syndrome (DS) model (83). These results demonstrate the

significant impact of melatonin on normalizing synaptic LTP and

mitigating morphological neurodivergence, as evidenced by both

electrophysiological and neuromorphological analyses. These findings

suggest that melatonin holds promise as an effective therapeutic

intervention for delaying the progression of neuropathology

associated with ASD individuals.
Molecular mechanism linking circadian and
synaptic function

The transport of GluA1-containing AMPARs in and out of the

synaptic membrane is the principal mechanism underlying synaptic

potentiation and depression, respectively. The AMPARs exhibit
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high calcium permeability, and their expression shows a superlinear

relationship with the size of the postsynaptic density, thereby

conferring significant influence on synaptic strength (84). The

levels of GluA1-containing AMPARs are 30-40% higher following

wakefulness compared to sleep in rats, indicating a state of net

synaptic potentiation during wakefulness and depression during

sleep. Additionally, the phosphorylation patterns of AMPARs, as

well as the enzymes CaMKII and GSK3b, align with these findings

(85). This implies that the variability in synaptic efficacy during

sleep and wakefulness is attributed to alterations at the postsynaptic

level, as previously indicated by changes in OSRP (85). Several

reports indicated that synaptic Shank3 protein exhibits minor

oscillations during the day in the hippocampus and striatal brain

region that correlate with the altered level of serum melatonin (86).

Further, the concentration of Shank3 increases rapidly during

wakefulness by inducing the active phase (86). The research

findings have confirmed that the lack of FMRP protein results in

excessive growth of dendritic branches, enlarged synaptic terminals,

and impairments in developmental and activity-based trimming

(87–89).

Indeed, the levels of synaptic plasticity-related proteins are

associated with a reduction in synaptic efficacy following sleep. For

instance, the levels of phosphorylated CREB protein, Arc, and BDNF

- three genes commonly associated with the induction of synaptic

plasticity - exhibit an increase during wakefulness but decline

following prolonged periods of sleep (90). Dark rearing increased

BDNF protein levels in the primary visual cortex region, but

decreased BDNF mRNA levels (91). It is evident that circadian

rhythms do not always synchronize the transcription and

translation of synaptic plasticity-related mRNAs, and the impact of

sleep-wake cycles on these processes lacks consistency. The synaptic

scaffold proteins (e.g. gephyrin and PSD-95) and neurexin 2a in the

SCN region of C3H/J mice exhibit a diurnal rhythm, peaking at ZT14

and subsequently declining during the dark period to reach minimal

levels during the day (92). In subsequent experiments conducted in

SCN2.2 (immortalized rat SCN cells), melatonin treatment was found

to enhance the amplitude and phase changes of synaptic proteins

PSD-95 and gephyrin, demonstrating its capacity to induce phase

shifts on these proteins similar to its effect on core clock components

such as Per2 (92, 93).
Structural changes in synapses mediated
by circadian

Gene mutations contribute to synaptic plasticity by modulating

the strength and/or quantity of synapses. Furthermore, gene

mutations have also been observed to exert an impact on

neuronal networks in animal models, leading to either excessive

activity and increased synaptic density or insufficient activity and

decreased synaptic density. Surprisingly, many circadian mutations,

particularly those in Bmal1, lead to enhanced gene transcription,

mRNA translation and protein synthesis, effects that are also

observed in response to alterations in neuronal activity (69).

Mutations in negative regulators of mTORC1, including TSC1,

TSC2, and PTEN, are associated with the development of TSC,
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FXS, AS, RTT (94, 95). In vivo, mutations in TSC1/2 result in

circadian rhythm irregularities due to dysregulated proteostasis of

the core circadian clock protein Bmal1 (96). In vitro, Bmal1

determine the expression of synaptic plasticity−related protein,

including BDNF, synpsin1, and synaptotagmin1 (97). This

observation is in line with the finding that the circadian

oscillation of protein synthesis rate is under the control of Bmal1,

a process regulated by ribosomal S6 protein kinase 1 (S6K1), a

critical translational regulator of mTOR effector protein kinases,

which rhythmically phosphorylates Bmal1 at evolutionarily

conserved sites (98).

In Bmal1 KO and Bmal1flx/flx: L7-Cre mice, several behavioral

deficits were observed, including impaired sociability as well as

increased behavioral stereotypy in the open field and three chamber

tests, when compared to wild-type mice (18, 37). The cerebellar

Purkinje cells (PCs) in Bmal1 KO and Bmal1flx/flx: L7-Cre mice

exhibited heightened activation of mTORC1 and displayed a

nascent dendritic spine morphology. Specifically, there was an

increased proportion of immature dendritic spines and a

decreased proportion of mature dendritic spines in the PCs (37).
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In addition, the shape of dendritic spines exhibit a significant

diurnal and circadian changes, which that are differentially

regulated: single-synapse spines remain under circadian clock

regulation, while changes of double-synapse spines are driven by

light (99). These electrophysiological alterations observed in

Bmal1-/- mice, including enhanced excitatory and inhibitory

signaling and amplified levels of oscillatory activity, align

harmoniously with the observed underdeveloped structure of

dendritic spines resulting from mechanisms occurring subsequent

to synaptic transmission (37) (see Table 1).
Towards the development
of treatment

Reaching the management of treatments
for autism

As previously mentioned, the circadian system, comprising central

and peripheral clocks, can be influenced by a range of environmental
TABLE 1 Evidence contributes to circadian clocks govern the synapse plasticity in ASD.

Sort Target Outcome Reference

Electrophysiological fEPSP The slope and duration of fEPSP were increased in mouse hippocampal slices in subjective night compared to
the day.

(74)

fEPSP The slope of fEPSP in the CA1 synapse in hippocampal slices exhibited an increase level at CT0 compared
to CT12.

(100)

fEPSP MT1/2
−/− mice and WT-SCGX mice, the circadian pattern of fEPSP was abolished, suggesting that circadian

significantly influence the circadian synaptic plasticity in mouse hippocampus.
(41)

fEPSP Circadian biomarker melatonin increase the amplitudes of fEPSP in hippocampal neurons. (83)

mEPSCs The frequency and amplitude of mEPSCs from frontal cortex slices of mice and rats increased after waking
and decreased after sleep, independent of time of day.

(76)

EPSCs Circadian biomarker melatonin restores both the frequency and amplitude of spontaneous EPSCs in
hippocampal neurons.

(82)

OSRP OSRP was only evident after subsequent sleep and promote cortical synaptic potentiation in vivo, while
blocked by sleep deprivation.

(78)

Molecular Bmal1 pBmal1-S42A contribute the synapse plasticity and is required for the circadian rhythm of
hippocampal plasticity.

(100)

PSD95 Melatonin pretreatment enhanced dendritic branching in pyramidal neurons and upregulated the expression
of PSD-95.

(82)

PSD95 Circadian biomarker melatonin enhances the amplitude and phase changes of PSD-95 and gephyrin. (92, 93)

Bmal1, PSD95 BMAL1 deficiency decreases microglial synaptic PSD95 engulfment in aged mice. (101)

Shank3 The concentration of Shank3 increases rapidly during the wakefulness by inducing the active phase. (86)

pCREB, Arc,
and BDNF

Synaptic plasticity associated molecular exhibit an increase during wakefulness but decline following
prolonged periods of sleep.

(90)

Structural Dendritic
spines

morphology

Bmal1flx/flx: L7-Cre mice exhibited a nascent dendritic spine morphology, specifically, increased proportion of
immature dendritic spines and a decreased proportion of mature dendritic spines.

(18, 37)

Dendritic
spines

morphology

Shape of dendritic spines exhibit a significant diurnal and circadian changes: single-synapse spines remain
under circadian clock regulation, while changes of double-synapse spines are driven by light.

(99)

Spine number The number of spines follow the circadian fluctuation pattern which contribute to learning capacity in
the hippocampus.

(102, 103)
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and systemic physiological factors, including light exposure, feeding

patterns, hormone regulation, and physical activity. Utilizing this

rhythm synchronizer can enhance the efficiency of circadian clock

operation, improve circadian rhythm and potentially decreasing

vulnerability to diseases affected by internal desynchrony. The

profound impact of circadian rhythms on physiology gives rise to two

primary approaches for translating prior knowledge of this mechanism

into clinical application. Chronotherapy can be classified into two

categories(see Table 2): (1) targeting biological rhythms by using

drugs or non-pharmacological interventions to manipulate circadian

rhythms or core clock genes; and (2) utilizing endogenous rhythm

regulation drugs established by the biological clock as regulators of

therapeutic drugs, which can improve efficacy and reduce adverse

reactions (125). In the subsequent sections, we delineate therapeutic

applications of both non-pharmacological and pharmacological

interventions that target circadian clocks in disease contexts (Figure 3).
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Circadian clocks as the target

Phototherapy
While there is currently no FDA-approved treatment or light

device specifically designated for this purpose, extensive research

has been conducted on the utilization of light to synchronize

circadian rhythms. Light exposure has been widely acknowledged

as a therapeutic intervention for sleep disorders, such as advanced

or delayed sleep phase syndrome, and ASD, which are characterized

by genetic, environmental, and pathological disruptions of circadian

rhythms (126). Transcranial photobiomodulation (PBM), which is

characterized by low level light therapy, has been demonstrated to

confer cognitive benefits by modulating mitochondrial function,

reducing inflammation, st imulating neurogenesis and

synaptogenesis in the cortex, hippocampus, and subventricular

zone, thereby facilitating memory enhancement and improved
TABLE 2 Towards the management of treatments for autism.

Sort Method Results Reference

Phototherapy Transcranial light therapy (TLTC) TLTC upgrades LTP and LTD in the CA1 collateral pathway. (104)

low-level laser light therapy (LLLT) LLLT ameliorate irritability, stereotypic behavior and other symptoms. (105)

Melatonin Oral administration of 1mg melatonin for 3 weeks, if
there is no response, then gradually increase to 9mg in
the following 13weeks

Melatonin yields favorable outcomes in terms of autism-like behaviors (such
as augmenting social engagement, flexibility, communication skills,
diminishing repetitive actions or anxiety.

(57, 106)

Oral administration of 3mg melatonin before bedtime Melatonin significantly reduces screaming attacks and improves sleep quality,
with onset of sleep occurring within 30 minutes in RTT individuals.

(107)

10−5 mol/L melatonin in vitro and i.p.10mg/kg
melatonin in vivo

Melatonin treatment increase presynaptic activity marker Synapsin-I and
Postsynaptic protein marker PSD95.

(82, 108)

Melatonin in vivo Melatonin enhances GABAergic transmission in the brain and modulate
diurnal variations.

(109, 110)

Circadian
components

PF-670462 PF-670462 administration rescue memory deficit and normalized behavior. (111–113)

SR9009, SR9011 SR9009/SR9011 administration induces wakefulness, inhibits sleep, regulates
emotional behavior, and mitigate anxiety-related behaviors.

(114)

SR9009 SR9009 administration enhances the expression of pre- and post-synaptic
markers PSD-95 and synaptophysin.

(115)

Natural
Compounds

Luteolin formulation Luteolin formulation enhances eye contact and attention, increase social
interaction, and resume speech.

(116)

Luteolin Luteolin safeguards synaptic function and enhances memory, as evidenced by
its facilitation of synaptic transmission and induction of long-
term potentiation.

(117)

Neonatal administration of curcumin Curcumin enhances sociability, reduce repetitive behaviors, and improve
cognitive impairments.

(118, 119)

Circadian
modulators

Melatonin administered in the late afternoon Melatonin advances the circadian rhythm of physiology and behavior when
administered in the late afternoon.

(120)

Risperidone and melatonin administered in
different phase

Administered risperidone in the morning and melatonin at 21:00 during
their inactive phase exhibited enhanced social interaction and improved
occupational status

(121)

Aripiprazole administered in the morning and evening Aripiprazole administered in the morning and evening modulate its
metabolic side effects, either reducing them.

(122)

Synchronize the ESDM therapist will replicate the rhythmic motor pattern of ASD child precisely
with a corresponding rhythmic pattern.

(123, 124)
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learning abilities (127). In a 5-days consecutive experiment,

transcranial light therapy (TLTC) device delivers a constant light

intensity of 74.5 lux during the 125 seconds the light module is on,

results demonstrated that light therapy upgrades LTP and LTD in

the CA1 collateral pathway (104). Moreover, low-level laser light

therapy (LLLT) has been demonstrated as an efficacious

intervention for reducing irritability, lethargy/social withdrawal,

stereotypic behavior, hyperactivity/noncompliance, inappropriate

speech and other symptoms and behaviors associated with ASD in

children and adolescents, exhibiting sustained positive outcomes

over an extended period of time (105). The promoting effect

observed may be attributed to the stimulation of BDNF

production, which in turn facilitates synaptogenesis (128).

Cumulatively, these investigations suggest that light-based

strategies potentially confer advantages in the prevention and

management of ASD.
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Melatonin
Since 1993, researchers have been studying the effects of

melatonin supplementation in individuals diagnosed with ASD

(129). Furthermore, recent treatment consensus guidelines

recommend the inclusion of melatonin as part of the treatment

plan (130, 131). Multiple studies have demonstrated that melatonin

decreased sleep latency and improved sleep duration (132, 133).

Although the melatonin cycle is not considered a pivotal

component of the core circadian clock, strategically targeting

implies that leveraging the circadian output pathway for

medication could potentially offer a more advantageous approach

compared to focusing solely on essential components of the core

circadian clock (125, 134). In clinical studies, three recent major

studies conducted in the United States, France and England aim to

demonstrate the efficacy of melatonin by examining the impact of

three different doses on alleviating sleep disorders (NCT01993251,
FIGURE 3

Circadian rhythm treatments for ASD can be roughly divided into two categories:1) Circadian rhythm as the target and 2) Circadian rhythm as the
modulator. The first category encompasses phototherapy, melatonin supplementation, circadian rhythm modulators, and natural compounds. Their
collective objective is to regulate pivotal molecules involved in circadian rhythms, thereby improving autistic-like behaviors symptoms. The second
category utilizes circadian rhythms to optimize clinical behavioral intervention or medication administration, emphasizing the synchronization of
motor and emotions, as well as the precise timing of drug consumption. This figure was created by the authors using ‘Photoshop’.
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NCT00927030, NCT01780883). Furthermore, the administration of

melatonin supplements may potentially yield favorable outcomes in

terms of autism-like behaviors (such as augmenting social

engagement, flexibility, communication skills, diminishing

repetitive actions or anxiety) (57, 106). Oral administration of

three milligrams of melatonin before bedtime resulted in a

significant reduction of screaming attacks and improvement in

sleep quality, with onset of sleep occurring within 30 minutes in

RTT individuals (107).

Several studies have elucidated the pivotal role of melatonin in

facilitating synapse formation through a receptor-mediated

mechanism. Furthermore, these investigations have provided

compelling evidence suggesting that melatonin can augment both

the quantity and rate of secretion in axonal and somatic cells. This

was corroborated by conducting immunostaining experiments

employing the Synapsin-I as a marker for presynaptic activity and

the Postsynaptic Density-95 (PSD95) protein marker (82, 108).

Given the implication of an imbalance in the excitatory

(Glutamatergic) and inhibitory (GABAergic) neurotransmitter

systems in the pathogenesis of ASD (135), it is crucial to consider

the precise equilibrium between neurotransmitter and receptor

production during this developmental period spanning from 12

to 30 months (136). In vivo, melatonin has been demonstrated to

enhance GABAergic transmission in the brain and modulate

diurnal variations (109, 110). Given the established efficacy and

absence of long-term toxicity, melatonin therapy emerges as a

highly safe chronobiotic strategy for managing sleep architecture

and synapse formation in autistic individuals.

Modulating circadian components
In recent years, the discovery of small molecule modulators of

circadian rhythms targeting core or non-core circadian components

has expanded circadian treatment options for individuals with ASD.

Although no reports have been published on small molecule

therapeutic targets specifically targeting circadian rhythm in ASD,

it is important to consider that like most pharmacological agents,

small molecule agents may have additional non-circadian targets

and can induce significant changes in key ASD-related phenotypes,

which would be crucial for enhancing efficacy. Given its potential to

modulate the circadian clock broadly, PF-670462, a small molecule

that can penetrate the blood-brain barrier and inhibit CK1a/e
(137), shows promise in stabilizing circadian rhythms in various

mouse models of circadian dysfunction. This compound may also

have the ability to mitigate proteomic alterations, cognitive

performance deficits, and disturbances in the sleep-wake cycle

associated with neurodegenerative diseases (111–113).

Pharmacological targeting of REV-ERBs exhibits promising

potential for therapeutic intervention in a broad range of

neurological, metabolic, and immune disorders. Compounds

believed to function as REV-ERB agonists, such as SR9009 and

SR9011, have demonstrated their capacity to induce wakefulness,

inhibit sleep, regulate emotional behavior, and mitigate anxiety-

related behaviors in murine models (114). Moreover, SR9009 was

confirmed to enhance the expression of pre- and post-synaptic
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markers PSD-95 and synaptophysin through modulating synaptic

pruning, thereby ameliorating synaptic deficits and improving

cognition impairment in neurodevelopmental diseases (115).

Natural compounds
In addition to synthetic compounds, some natural chemical

substances also have the function of regulating the biological clock,

providing a theoretical possibility for the concept of chrono-medicine

in the prevention and treatment of ASD. The natural plant flavonoid,

luteolin, effectively attenuated IL-6 expression in glial cells and

demonstrated neuroprotective and anti-inflammatory properties

(138). Administration of a luteolin formulation (NeuroProtek®) in

conjunction with conventional medication resulted in significant

improvements among children with ASD, including a 50%

enhancement in eye contact and attention, a 25% increase in social

interaction, and approximately 10% experiencing the resumption of

speech (116). Therefore, luteolin was employed for the management

of autistic behavior and enhancement of social behavior (139, 140).

The pharmacological effect of luteolin exhibits a diurnal pattern,

recent study demonstrates that luteolin induces antioxidant enzymes

by activating Nrf2 in the liver of mice at ZT12 (active phase), but not

at ZT0 (inactive phase) (141). Furthermore, luteolin demonstrates

significant potential in safeguarding synaptic function and enhancing

memory, as evidenced by its facilitation of synaptic transmission and

induction of long-term potentiation (117).

Neonatal administration of curcumin was found to ameliorate

autism-related symptoms in BTBRT+ltpr3tf/J (BTBR) mice, a well-

established model for autism, by enhancing sociability, reducing

repetitive behaviors, and improving cognitive impairments (118,

119). Notably, curcumin modulates multiple signaling pathways

involved in regulating intracellular timing cycles that generate

circadian rhythms. These targets encompass STAT, PPARg, and
NFkB, which exert their effects on gene expression (including

mRNA expression of Period and Timeless) within the interconnected

molecular timing loops of the circadian oscillator responsible for

rhythm generation (142, 143). Therefore, this also provides us with a

potential avenue for future research, exploring whether the synaptic

morphology, pathological changes, and behavioral improvements

induced by natural compounds in patients with ASD are influenced

by circadian rhythms. Specifically, investigating whether the efficacy of

natural drugs is time-dependent within a specific period (e.g., active

versus inactive periods) would be valuable.
Circadian rhythm as modulators

Despite the prevailing practice of administering medicines

without considering the timing, comprehensive circadian

transcriptome studies have revealed that most drug targets exhibit

rhythmic expression in specific tissues (144, 145). For example,

melatonin advances the circadian rhythm of physiology and

behavior when administered in the late afternoon, while it delays

it in the early morning (120). In randomized controlled trials, both

risperidone and aripiprazole, FDA-approved medications have
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demonstrated efficacy in alleviating symptoms of irritability or

agitation in children and adolescents with ASD (146, 147).

Intriguingly, patients with neurodevelopmental disorders who

were administered risperidone in the morning and melatonin at

21:00 during their inactive phase exhibited enhanced social

interaction and improved occupational status (121). Additionally,

aripiprazole exhibits a significant influence on circadian behavior

and cellular rhythm within the SCN. In vivo, chronic administration

of aripiprazole enhances entrainment to the external light-dark

cycle, while in an experiment utilizing SCN slice cultures, the

application of aripiprazole disrupts cellular synchrony, thereby

attenuating the rhythm (148). Indeed, a 14-year longitudinal

study demonstrated that the dosing schedule of aripiprazole

(administered in the morning and evening, respectively) may

modulate its metabolic side effects, either reducing them (122).

Given that metabolic side effects pose significant limitations to

antipsychotic usage in individuals with ASD, mitigating this risk

would represent a noteworthy advancement.

Developmental behavioral interventions, such as Early Start

Denver Model (ESDM) also emphasize the circadian rhythms and

synchronization (149, 150). Within the model, the therapist

collaborates with the child to establish and maintain synchronized,

coordinated activity routines that incorporate teaching opportunities.

The ESDM acknowledges the significance of motor, emotional,

feeding, and relational synchrony in facilitating early development

among children diagnosed with autism. As a comprehensive,

behavioral, and developmental early intervention program designed

for infants and toddlers diagnosed with ASD, ESDM is grounded in

an understanding of circadian rhythmicity and synchrony at multiple

levels. For instance, if the child employs an object exhibiting a

rhythmic motor pattern, the therapist will replicate this behavior

precisely with a corresponding rhythmic pattern. Subsequently, the

child’s progress is facilitated by introducing novel and diverse

rhythms (123). Furthermore, the therapist’s adjustment of their

behaviors, movements, level of arousal, and posture to align with

those of the child contributes to establishing fundamental

consistencies that are crucial during the initial phase (124).
Future perspectives and conclusions

In summary, a comprehensive review of previous studies indicates

that the influence of biological rhythms on neurodevelopment and

synaptic strength in ASD is not characterized by a simple,

unidirectional effect. Instead, it appears to be contingent upon

multiple factors. These factors encompass the examined circuit,

animal age, pre-sleep stimulation type, hormone levels, sleep-wake

cycles, and presence of a robust circadian rhythm (oscillation

amplitude). Circadian rhythms, whether originating from the central

pacemaker or induced by peripheral oscillators, exert a profound

influence on synaptic potency and morphology. The determination of

the respective roles of state-dependent and clock-dependent

alterations in synaptic efficacy represents a crucial area for future

research. The state-clock model provides a theoretical framework to

investigate these phenomena, as previously acknowledged.
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The circadian clock plays a crucial role in regulating key

physiological processes during mammalian neural development

and has been extensively investigated. Emerging evidence suggests

that these two systems can interactively modulate each other

through diverse mechanisms in both normal and pathological

conditions. Neurodevelopment in individuals with ASD is a

highly intricate process, wherein synaptogenesis and the

establishment of mature synaptic connections play a pivotal role.

Therefore, gaining a comprehensive understanding of the intricate

interplay between the circadian clock and synaptic and

neurodevelopmental cycles will greatly contribute to the

development of efficacious chronotherapeutic interventions

for ASD.
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