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INTRODUCTION

Plant breeding is based on phenotyping, not only because of tradition but also because of essence. A
plant phenotype is the result of the interactions between the genome of a stationary plant and all the
micro- and mega-environments encountered during its life span. Over the recent years, we have
witnessed an explosion in state-of-the-art technologies developed through collaborative efforts of
multidisciplinary teams to assist the process of high-throughput plant phenotyping in plant
breeding (NSF, 2011), first only under controlled conditions and, more recently, also under real
field conditions (Lawrence-Dill et al., 2019).

Yet, plant phenotyping is still the bottleneck for breeding and farming (Chawade et al., 2019) and
the average plant-breeding program has not been adopting the new developments adequately
(Awada et al., 2018) Among the solutions proposed, a major international effort is being directed
towards data and protocol standardization (Pieruschka and Schurr, 2019) that will be
discussed later.

What so far has not been seriously considered, but we assert it should occupy a central part in the
relevant discussions, is the choice of the appropriate unit of plant phenotyping in the field, so that the
efficiency of selection in plant breeding programs and the corresponding measurable genetic gain are
maximized. Should the community continue using the multi-plant, densely grown field plot as the unit
of phenotyping and evaluation for plant breeding purposes or should we consider more efficient
approaches based on the maximization of a plant’s phenotypic expression and differentiation?

To increase efficiency in plant breeding, we advocate that the most appropriate unit of plant
phenotyping for selection purposes should correspond to the individual plant grown unhindered in
the absence of competitive interactions so that phenotypic expression and the corresponding
phenotypic variance are maximized, the coefficient of variation (CV) of single-plant yields is
minimized, and spatial heterogeneity is effectively controlled. These conditions are met when plants
are allocated in the field according to one of the honeycomb selection designs (HSD) (Fasoulas and
Fasoula, 1995; Fasoula and Fasoula, 1997a; Fasoula and Fasoula, 2002).

In this opinion paper, we present a list of some commonly encountered barriers during a plant
breeding program, including the so-called pre-breeding activities that exploit the potential of crop
wild relatives (CWR), and discuss how these are successfully faced once the unit of plant
phenotyping becomes the individual plant grown as described. Results from our long-term
research focusing on the application and further development of the principles related to the
HSD and the prognostic breeding paradigm (Fasoula, 2013) in various crops and trials (Fasoula,
1990; Fasoula, 2004; Omirou et al., 2019) are summarized and placed in context.
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BARRIER 1: LIMITED SEED SUPPLY IN
THE SEGREGATING GENERATIONS
FOLLOWING A CROSS

Thisbarrier relates to the limited seed supply in the early segregating
generations following a cross and the fact that each seed represents a
unique genotype. This obstacle, complicated by the next barriers, is
so serious that it has led to the old, convenient, inexpensive, and
common practice of visual selection (hence the renowned
“breeder’s eye”) until enough homogeneous seed is gradually
generated during the next few years, so as to permit replications,
ranging between two and six, of densely grown plots. Additional
testing locations are possible to be included only in the latter stages
of the program. A similar problem of limited seed supply is
encountered when crop wild relatives and ex situ materials in
gene banks need to be phenotyped. Seed supplies are not an issue
whenworkingwith individualplants inHSDs (Figure 1) andmulti-
location evaluations can successfully start as early as in F2 with a
virtually unrestricted number of replications.
BARRIER 2: EFFECTS OF
INTERPLANT COMPETITION

This barrier refers to the masking effects of interplant competition
on selection efficiency (Kyriakou and Fasoulas, 1985; Fasoula, 1990;
Fasoula and Fasoula, 1997a) and the dominating confusion
regarding the concepts of competition and density that are
commonly treated as one and the same. They are related, but not
equivalent. This confusion further complicates the issue of
associating the superiority ranking based on individual plant
performance with the ranking under commercial stands.
Competition is defined as “the plant-to-plant interference with
the equal sharing of the density-limited growth resources caused by
genetic and acquired differences and quantified by theCVof single-
plant yields” (Fasoula and Fasoula, 1997a; Fasoula and Fasoula,
2002). It is possible and compatible to have high planting densities
with simultaneous reduction of inter-plant competition, whereas
performance underdifferent densities, contrary to an existingbelief,
does not need to be represented in the analysis of crop yield
potential (CYP).

Barrier 2 is overcome through a) the partitioning of CYP into
components measured concurrently and precisely at the single-
plant level under conditions excluding interplant competition
(Fasoula and Fasoula, 2000; Fasoula and Fasoula, 2003) and b)
the development of thewhole-plant and sibling linefield prognostic
or phenotyping equations (Fasoula, 2006; Fasoula, 2008; Fasoula,
2013). The CYP components are condensed in two, the plant yield
potential per se and the plant stability index, the latter being
quantified on a single-plant basis for the first time. The whole-
plant prognostic equation PPE incorporates the two components:

PPE = (x=�xr)
2(�xg=s)

2

where x is the plant yield in grams, �xr the mean yield in grams
of the surrounding moving and complete circular replicate, �xg is
the mean yield in grams of the sibling line plants allocated in a
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moving grid, and s its standard deviation. Thus, the need to
identify an optimal planting density becomes ultimately
unnecessary and the ranking under ultra-wide distances
corresponds very well to the ranking under commercial
densities (Fasoula and Fasoula, 2000; Fasoula, 2013;
Greveniotis and Fasoula, 2016; Omirou et al., 2019).

We advocate that the critical question is not whether the entry
ranking in densely grown plots corresponds to the ranking of
individual plants in wide distances, but whether we truly need
genotypes that behave differently under the two conditions. New
varieties shouldhave the geneticmakeup that renders themdensity-
neutral ordensity-independent (Fasoula andFasoula, 2000; Fasoula
and Fasoula, 2002; Fasoula, 2013; Fasoula et al., 2014; Uphoff et al.,
2015). This is particularly necessary considering the abrupt
fluctuations under climate change and for the drought-prone and
marginal regions. Further and importantly, the dense planting in
itself is simply neither conducive nor practical towards
implementing field phenotyping of individual plant canopies and
the corresponding entangled root systems for rootphenotyping.An
additional disturbing effect of interplant competition that hinders
efficiency of selection relates to the existing negative correlation
between yielding and competitive ability (Fasoula and Fasoula,
1997a and references therein).
BARRIER 3: EFFECTS OF SOIL AND
SPATIAL HETEROGENEITY

This barrier relates to the masking effects of soil and spatial
heterogeneity. The development of HSDs enables the effective
sampling of soil heterogeneity, ensuring that all plants and sibling
lines are allocated under comparable growing conditions in both
fertile and non-fertile spots. In all HSDs, each plant in the trial is
found in the middle of a i) circular, ii) complete, and iii) moving
replicate and each sibling line belongs to a moving and triangular
grid that covers uniquely the whole spectrum of spatial
heterogeneity (Figure 1A). These properties come along with an
unrestricted number of replications, commonly between 40 and
120, and the two precision field phenotyping equations.
BARRIER 4: STATISTICAL
ANALYSIS ISSUES

This barrier concerns the incremental changes in the breeding
process that are real but impossible to be detected and captured
by traditional selection designs and statistical analysis that focus
on statistical significance and analysis of variance. The analysis
pertinent to the prognostic breeding paradigm is very sensitive
about minor differences and the ranking is based on the unique
plant and sibling line prognostic equation values during all stages
of the breeding program (Fasoula et al., 2019). This fact both
anticipates and converges with the most recent awareness and
recommendations about the pitfalls of the notion of statistical
significance. The notable book by Ziliak and McCloskey (2008)
and the subsequent special issue of The American Statistician
about the pitfalls andmisuse of statistical significance (Wasserstein
January 2020 | Volume 10 | Article 1713
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FIGURE 1 | (A) All barley biomass and the multiple, fertile tillers (>70) in each field spot correspond to a single seed. The number of replications are commonly 40–
120 and plant spacing is 100 cm. (B) The honeycomb selection design D19 is used to demonstrate the principles of moving complete replicates and grids and the
components of the prognostic equations.
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et al., 2019) are relevant. As the latter authors point out: “In sum,
“statistically significant”—don’t say it and don’t use it”.

In prognostic breeding, the evaluated entries are recognized
from the start as being inherently different, regardless of their
potentially similar background. Each plant in the trial receives a
unique quantitative identifier, its plant prognostic equation value,
according to the exclusive properties of the HSDs. The ensuing
ranking is based on accurate and quantitative evaluation standards
that exclude any visual selection and breeder’s bias during all stages
of the breeding program. Thus, it is the environment that decides
about the “best” genotypes, not a subjective human preference.

Further details in Fasoulas and Fasoula (1995) describe the
fundamental incompatibility between the analysis of variance
(ANOVA) and the principles underlying the development of the
HSDs. A small extract: “Experimental error, as estimated by
variance analysis, is a pooled error based on the assumption that
variances among entries are equal… however, entry variances are
not equal, due to genetic differences that always exist among
entries…instead of searching for procedures that reduce error
variance by correcting the effects of spatial heterogeneity, plant
breeders need procedures that exploit spatial heterogeneity to select
for stability of performance early in the breeding program.”

The above have also implications towards novel approaches
to explore the nature of gene action underlying quantitative traits
(Fasoula and Fasoula, 1997b; Fasoula and Fasoula, 2002; Fasoula
and Boerma, 2005). Of relevant interest also is recent work by
Huang and Mackay (2016).
BARRIER 5: DIFFERENCES BETWEEN
PLANTS AND ANIMALS AFFECT
ESTIMATIONS OF GENETIC GAIN AND
RESPONSE TO SELECTION

Barrier 5 relates to the conditions that satisfy the so-called breeder’s
equation, originally derived from the practice of animal breeding
(Hill, 2014), that describes the expected response to selection and
represents the presently established way to estimate genetic gain
also in plant breeding. A simplified form of the equation (Falconer,
1989) isR=sp h2 i, wheresp is the population phenotypic standard
deviation, h2 the coefficient of heritability, and i the standardized
selection differential. Briefly, the equation predicts that the larger
thephenotypic standarddeviationof thepopulationunder selection
and the smaller the proportion of the (truly superior with greater
number of progenies) plants advanced to the next generation, the
higher will be the response R to selection. The same is expected
when decreasing the generation time interval that is also related to
the greater number of progenies.

In the practice of animal breeding, the unit of evaluation for
selection has always been the individual animal raised with no
competitive interactions for resources (Fasoulas andFasoula, 1995),
as each animal receives an own and specified feed portion. Falconer
(1989) explicitly refers to this difference when discussing the
equation. It follows that the most relevant conditions to apply the
equation in plant breeding is when the individual plant is grown in
conditions that exclude competitive interactions (Figure 1A). Even
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so, this form of the equation does not exploit the unique differences
between plants and animals, such as the stationary nature of plants
and the fact that the average plant produces a far greater number of
progenies than an animal. The plant prognostic equation can be
used effectively to select for high crop yield potential and, therefore,
high response to selection, as discussed in details in Fasoula (2013).
The derivation of PPE satisfies the conditions of the currently used
“breeder’s equation” and at the same time explicitly takes into
consideration the unique features of plants. Thus, it becomes
feasible to report major gains (Fasoula, 2012; Greveniotis and
Fasoula, 2016; Omirou et al., 2019) and overcome the current
stagnation of yield gains ofmajor crops that is widely recognized at
around 1% (Peng et al., 2000; CGIAR, 2016). Further and also
related to Barrier 6, there are substantial differences between the
reproductive lineages of plants and animals. We assert that these
differences have consequences for plant breeding, as the favorable
events during plant development need to be captured at the
individual plant level.
BARRIER 6: PLANT (EPI)GENOMICS IS
BASED ON INDIVIDUAL GENOMES, BUT
NOT PLANT FIELD PHENOMICS

This important barrier (Fasoula and Fasoula, 2000) concerns the
fact that while all (epi)genomic analysis concern individual
genomes, the corresponding current practices in plant breeding
aiming to bridge the so-called genotype–phenotype gap concern
multi-plant grown plots. Relevant articles that confirmed this
concept and identified genomic variation among individuals of a
variety include Haun et al. (2011) and Yates et al. (2012).
BARRIER 7: AUTOMATION CHALLENGES

This barrier relates to the reasons underlying the lack
of automation in plant breeding coupled with the lack of
standards in the phenotyping trials. The adoption of
automated phenotyping in plant breeding is still in its infancy
(Walter et al., 2017). The need for standardization requirements
is commonly expressed by members of the phenotyping
community, although it is aptly recognized that “standardized
methods are valuable, but novel methods are, too!…” (Lawrence-
Dill et al., 2018). The application of the highly systematic HSD
and the prognostic equations for unbiased selection of superior
plants carry the intrinsic capability towards completely
automizing the genetic improvement of crops from the earliest
to the latest stages of a breeding program. This has immediate
and highly positive impact towards the maximization of selection
efficiency and the cost reduction of the produced seed. The
allocation of individual plants in each HSD is highly regular,
symmetrical, with repeating motifs, and independent of the trial
location, thus overcoming the need for separate entry
randomization in each location. Plants are allocated in
horizontal rows in an ascending numerical order, permitting
the creation of moving complete replicates across all levels of
January 2020 | Volume 10 | Article 1713
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spatial heterogeneity and in all types of environments form
marginal to highly productive.

Each plant in a HSD trial possesses a unique position
identification number, for example 8-12-7, where number 8
gives the number of the horizontal row, number 12 gives the
plant position on the row, and number 7 gives the number of the
design code corresponding to the particular sibling line. Attached
to this number is the corresponding unique value of the plant
phenotyping or prognostic equation. The intrinsic properties of
the designs that provide a matrix of standardized motifs across
environments and the wide distances between plants facilitate
the use of geo-referencing methods. Plants are ranked according
to the value of their phenotyping equation and selection of the
“best” in each environment is an unbiased process, rendering the
same results regardless of the person performing the analysis. It
is thus amenable to full automation and robotization.

Following the discussion on the barriers, we would also like to
draw someattention to somerecent references andwork that support
the above and highlight the novel possibilities that unfold. There is a
recent acknowledgment that “it has become measurably harder to
generate ideas and new approaches that result in real gains”
(Lawrence-Dill et al., 2019) and the endorsement by Fischer et al.
(2019) of the “unique breeding strategy proposed in the 1970s by
Professor AC Fasoulas …”. Although the latter article appears to
ignore all literature and critical developments in the strategy after
1993, at the risk of diverting resources towards the already known, it
offers an interesting realization by experienced plant physiologists/
breeders. Further, different groups have validly acknowledged that
the physiology-based breeding that relies on measurements of
secondary traits presumed to be proxies for crop yield has been
largely unsuccessful (NSF, 2011), while in the prognostic breeding
applications, the direct and successful selection for yield is the norm.
Frontiers in Plant Science | www.frontiersin.org 5
Importantly, there is good convergence of the concepts
described above and the highly successful agronomic practices
of the System of Rice Intensification (SRI) (Uphoff et al., 2015).
Thus, the above ideas can be applied towards additional benefits
for improving the agronomic performance of crops and
contributing to the minimization of the global yield gaps.
CONCLUSIONS

The field phenotyping community can benefit by giving due
consideration to the suggested innovations towards overcoming
current barriers in plant phenotyping and phenomics, while
serving also the developments in plant (epi)genomics. The
involvement of international, multidisciplinary teams will
contribute to the deeper understanding of the methodology.
This will, in turn, unfold additional options and facilitate the
successful automation, standardization, and robotization of
large-scale phenotyping for plant breeding.
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