About this Research Topic
Oligotyping is a supervised computational method recently introduced to address this issue. It uses Shannon entropy to identify subtle nucleotide variations among high-throughput sequencing reads. By defining more relevant ecological and biological units, oligotyping makes it possible to better explain the diversity of closely related but distinct bacterial organisms in large datasets.
Oligotyping is being used in an increasing number of projects seeking to understand occurrence patterns of microorganisms, their environmental controls, or their hosts physiology. This method already permitted to further explore temporal and spatial variations among samples from human oral cavity, animal gastrointestinal tract, plant leaf surface, sponge symbiosis, viral communities and pelagic marine ecosystems.
Based on these initial results and our experience with oligotyping, we are now convinced of the high potential of this method as in many cases oligotyping analyses provided new insights compared to traditional approaches. We would thus like to encourage microbial ecologist currently revisiting their large-scale microbial diversity studies with oligotyping, to share their results in this Frontiers Research Topic. Beyond promoting this new tool, we envision that such collection of articles might contribute to the development of an updated view of microbial diversity, linking ecology, biogeography, and evolutionary processes in microbial world through subtle nucleotide variations.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.