
Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 05 June 2009
doi: 10.3389/neuro.11.017.2009

Establishing a novel modeling tool: a python-based interface
for a neuromorphic hardware system

Daniel Brüderle1*†, Eric Müller1†, Andrew Davison2, Eilif Muller3, Johannes Schemmel1 and Karlheinz Meier1

1 Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
2 Unité de Neurosciences Intégratives et Computationnelles, CNRS, Gif sur Yvette, France
3 Laboratory of Computational Neuroscience, EPFL, Lausanne, Switzerland

Neuromorphic hardware systems provide new possibilities for the neuroscience modeling
community. Due to the intrinsic parallelism of the micro-electronic emulation of neural
computation, such models are highly scalable without a loss of speed. However, the communities
of software simulator users and neuromorphic engineering in neuroscience are rather disjoint.
We present a software concept that provides the possibility to establish such hardware devices
as valuable modeling tools. It is based on the integration of the hardware interface into a
simulator-independent language which allows for unifi ed experiment descriptions that can be
run on various simulation platforms without modifi cation, implying experiment portability and
a huge simplifi cation of the quantitative comparison of hardware and simulator results. We
introduce an accelerated neuromorphic hardware device and describe the implementation of
the proposed concept for this system. An example setup and results acquired by utilizing both
the hardware system and a software simulator are demonstrated.

Keywords: neuromorphic, VLSI, hardware, software, modeling, computational neuroscience, Python, PyNN

followed by production and testing phases. This process normally
takes several months. Further fundamental differences between
hardware and software models will be discussed in the Section
“Neuromorphic Hardware”.

Except for the system utilized in this work, all cited neuromorphic
hardware projects currently work with circuits operating in biological
real-time. This allows interfacing real-world devices such as sensors
(Serrano-Gotarredona et al., 2006) or motor controls for robotics,
as well as setting up hybrid systems with in vitro neural networks
(Bontorin et al., 2007). The neuromorphic hardware systems we
consider in this article, as described in Schemmel et al. (2007, 2008),
possess a crucial feature: they operate at a highly accelerated rate.
The device which is currently in operation (Schemmel et al., 2007)
(see “The Accelerated Hardware System” for a detailed description)
exhibits a speedup factor of 105 compared to the emulated biological
real time. This opens up new prospects and possibilities, which will
be discussed in the Section “Neuromorphic Hardware”.

This computation speed, together with an implementation path
towards architectures with low power consumption and very large
scale networks (Fieres et al., 2008; Schemmel et al., 2008), makes
neuromorphic hardware systems a potentially valuable research
tool for the modeling community, where software simulators are
more commonplace (Brette et al., 2006; Morrison et al., 2005,
2007). To establish neuromorphic hardware as a useful compo-
nent of the neural network modelers’ toolbox requires a proof of
the hardware system’s biological relevance and its operability by
non-hardware-experts.

An approach which can help to fulfi l both of these conditions is to
interface the hardware system with the simulator-independent lan-
guage PyNN (Davison et al., 2008) (see “PyNN and NeuroTools”).
The PyNN meta-language allows for a unifi ed description of neural

INTRODUCTION
Models of spiking neurons are normally formulated as sets of dif-
ferential equations for an analytical treatment or for numerical
simulation. So-called “neuromorphic” hardware systems represent
an alternative approach. In a physical, typically silicon, form they
mimic the structure and emulate the function of biological neural
networks. Neuromorphic hardware engineering has a tradition going
back to the 1980s (Mead, 1989; Mead and Mahowald, 1988), and
today an active community is developing analog or mixed-si gnal
VLSI models of neural systems (Ehrlich et al., 2007; Häfl iger, 2007;
Merolla and Boahen, 2006; Renaud et al., 2007; Schemmel et al., 2007,
2008; Serrano-Gotarredona et al., 2006; Vogelstein et al., 2007).

The main advantage of the physical emulation of neural network
models, compared to their numerical simulation, arises from the
locally analog and massively parallel nature of the computations.
This leads to neuromorphic network models being typically highly
scalable and being able to emulate neural networks in real time or
much faster, independent of the underlying network size. Often, the
inter-chip event-communication bandwidth sets a practical limit
on the scaling of network sizes by inter-connecting multiple neural
network modules (Berge and Häfl iger, 2007; Costas-Santos et al.,
2007; Schemmel et al., 2008). Compared to numerical solvers of
differential equations which require Von-Neumann-like computer
environments, neuromorphic models have much more potential
for being realized as miniature embedded systems with low power
consumption.

A clear disadvantage is the limited fl exibility of the implemented
models. Typically, neuron and synapse parameters and the net-
work connectivity can be programmed to a certain degree within
limited ranges by controlling software. However, changes to the
implemented model itself usually require a hardware re-design,

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Bernabe Linares-Barranco, Instituto de
Microelectrónica de Sevilla, Spain
Adrian Whatley, University of Zurich,
Switzerland

*Correspondence:

Daniel Brüderle, Kirchhoff Institute for
Physics, Im Neuenheimer Feld 227,
69120 Heidelberg, Germany.
e-mail: bruederle@kip.uni-heidelberg.de
†Daniel Brüderle and Eric Müller have
contributed equally to this work.

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 2

Brüderle et al. Python interface for neuromorphic hardware

network experiments, which can then be run on all supported back-
ends, e.g. various software simulators or the presented hardware
system, without modifying the description itself. Experiment port-
ability, data exchange and unifi ed analysis environments are only
some of PyNN’s important implications. For neuromorphic devices,
this provides the possibility to calibrate and verify the implemented
models by comparing any emulated data with the corresponding
results generated by established software simulators. Every scientist,
who has already used such a simulator with scripting support or
with an interpreter interface, will easily learn how to use PyNN.
And every PyNN user can operate the presented hardware system
without a deeper knowledge of technical device details.

In the Section “Simulator-like Setup, Operation and Analysis”,
the architecture of a Python (Rossum, 2000) interface to the hard-
ware system, which is the basis for integration into PyNN, will be
described in detail. The advantages and problems of the PyNN
approach for the hardware system will also be discussed. In the
Section “The Interface in Practice”, an example of PyNN code for
the direct comparison of an experiment run on both the hard-
ware system and a software simulator, including the corresponding
results, will be presented.

NEUROMORPHIC HARDWARE
Unlike most numerical simulations of neural network models,
analog VLSI circuits operate in the continuous time regime. This
avoids possible discretization artifacts, but also makes it impos-
sible to interrupt an experiment at an arbitrary point in time and
restart from an identical, frozen network state. Furthermore, it
is not possible to perfectly reproduce an experiment because the
device is subject to noise, to cross-talk from internal or external
signals, and to temperature dependencies (Dally and Poulton,
1998). These phenomena often have a counterpart in the biologi-
cal specimen, but it is highly desirable to control them as much
as possible.

Another major difference between software and hardware mod-
els is the fi niteness of any silicon substrate. This in principle also
limits the software model size, as it utilizes standard computers with
limited memory and processor resources, but for neuromorphic
hardware the constraints are much more immediate: the number
of available neurons and the number of synapses per neuron have
strict upper limits; the number of manipulable parameters and the
ranges of available values are fi xed.

Still, neuromorphic network models are highly scalable at con-
stant speed due to the intrinsic parallelism of their circuit operation.
This scalability results in a relative speedup compared to software
simulations, which gets more and more relevant the larger the
simulated networks become, and provides new experimental pos-
sibilities. An experiment can be repeated many times within a short
period, allowing the common problem of a lack of statistics, due
to a lack of computational power, to be overcome. Large param-
eter spaces can be swept to fi nd an optimal working point for a
specifi c network architecture, possibly narrowing the space down
to an interesting region which can then be investigated using a
software simulator with higher precision. One might also think
of longer experiments than have so far been attempted, especially
long-term learning tasks which exploit synaptic plasticity mecha-
nisms (Schemmel et al., 2007).

THE ACCELERATED HARDWARE SYSTEM
Within the FACETS research project (FACETS, 2009), an inter-
disciplinary consortium investigating novel computing paradigms
by observing and modeling biological neural systems, an acceler-
ated neuromorphic hardware system has been developed. It will
be described in this section.

Neuron, Synapse and Connectivity model
The FACETS neuromorphic mixed-signal VLSI system has been
described in detail in recent publications (Schemmel et al., 2006,
2007). Implemented is a leaky integrate-and-fi re neuron model
with conductance-based synapses, designed to exhibit a linear cor-
respondence with existing conductance-based modeling approaches
(Destexhe et al., 1998). The chip was built on a single 25 mm2 die
using a standard 180 nm CMOS process. It models networks of up
to 384 neurons and the temporal evolution of the weights of 105
synapses. The system can be operated with an acceleration factor
of up to 105 while recording the neural action potentials with a
temporal resolution of approximately 0.3 nS, which corresponds
to 30 µs in biological time.

The neuron circuits are designed such that the emulated mem-
brane potential V(t) is determined by the following differential
equation for a conductance-based integrate-and-fi re neuron:

− = − + −

+ −

∑

∑

C
V

t
g V E p t g t V E

p t g t V E

j
j j

k
k k

m m l e

i

d

d
() () ()()

() ()()

(1)

where C
m

 represents the total membrane capacitance. The fi rst
term on the right hand side, the so-called leak current, models
the contribution of the different ion channels that determine the
potential E

l
 the membrane will eventually reach if no other cur-

rents are present. The synapses use different reversal potentials,
E

i
 and E

e
, to model inhibitory and excitatory ion channels. The

index j in the fi rst sum runs over all excitatory synapses while the
index k in the second sum covers the inhibitory ones. The activa-
tion of individual synapses is controlled by the synaptic opening
probability p

j,k
(t) (Dayan and Abott, 2001). The synaptic conduct-

ance g
j,k

 is modeled as a product of the synaptic weight ω
j,k

(t)
and a maximum conductance max()j kg t, . The neuron emits a spike
if a threshold voltage V

th
 is exceeded, after which the membrane

potential is forced to a reset voltage V
reset

 and then released back
into the infl uence of excitatory, inhibitory and leakage mecha-
nisms. The weights are modifi ed by a long-term plasticity algo-
rithm (Schemmel et al., 2007) and thus can vary slowly with time.
Table 1 summarizes the most important hardware parameters,
with their counterparts in the biological model, their available
ranges and uncertainties.

Each chip is divided into two network blocks of 192 neurons
each, and each block can receive 256 different input channels. Each
input channel into a block can be confi gured to receive either a
feedback signal from one specifi c neuron within the same block, a
feedback signal from the opposite block, or an externally generated
signal, for example from some controlling software. Every neuron
within the block can be connected to every input channel via a
confi gurable synapse. Synaptic time constants and the values for gmax
are shared for every input channel, while the connection weights

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 3

Brüderle et al. Python interface for neuromorphic hardware

can be set between 0 nS and gmax with a four bit resolution for each
individual connection.

Although the free parameter space is already large, the model
fl exibility is clearly limited, especially in terms of its inter-neuron
connectivity. Based on the experience acquired with the proto-
type chip described above, a wafer-scale integration1 system (Fieres
et al., 2008; Schemmel et al., 2008) with up to 1.8 × 105 neurons and
4 × 107 synapses per wafer is currently under development. It will
be operated with a speedup factor of up to 104 and will provide a
much more fl exible and powerful connectivity infrastructure.

Support framework
In order to give life to such a piece of manufactured neuromorphic
silicon, an intricate framework of various pieces of custom-made
support hardware and software layers has to be deployed, which has
previously been reported on. The chip is mounted on a carrier board
called Nathan (Fieres et al., 2004; Grübl, 2007, Chapter 3) which also
holds, among other components, an FPGA for direct communication
control and some RAM memory modules for storing input and out-
put data. Up to 16 of these carrier boards can be placed on a so-called
backplane (Philipp et al., 2007), which itself is connected to a host
PC via a PCI-based FPGA card (Schürmann et al., 2002).

The connection from chip to computer via the PCI card allows the
confi guration of the hardware, the defi nition and application of spike
stimuli and the recording of spiking activity from within the network.
Analog sub-threshold data can only be acquired via an oscilloscope2,
which is connected to pins that can output selectable membrane
potentials. Via a network connection, the information from this
oscilloscope can be read and integrated into the software running
on the host computer (see Figure 1 for a setup schematic).

Both an FPGA on the backplane and those on the carrier
boards are programmed and confi gured with dedicated code.

Communication with the PCI board utilizes a specifi c device
driver and a custom-made protocol (Philipp, 2008, Chapter 2.2.4).
Multi-user access is realized via userspace daemon multiplexing
connections to different chips while encapsulating control com-
mands and data from multiple users in POSIX Message Queues
(IEEE, 2004). Data transfer from and to the oscilloscope is based
on TCP/IP sockets (Braden, 1989; LeCroy, 2005). Interconnecting
multiple chips in order to set up larger networks will be possible
soon (Philipp et al., 2007).

SIMULATOR-LIKE SETUP, OPERATION AND ANALYSIS
As proposed in the introduction, attracting neuroscience experts
into the fi eld of neuromorphic engineering is essential for the
establishment of hardware devices as modeling tools. Neuroscience
expertise has to be consulted not only during the design process,
but also, and especially, after manufacturing, when it comes to
verifying the device’s biological relevance. This implies a whole set
of requirements for the software which provides the user interface
to the hardware.

If the system is to be operated by scientists from fi elds other
than neuromorphic engineering, the software must hide as many
hardware-specifi c details as possible. We propose that it should pro-
vide basic control mechanisms similar to typical interfaces of pure
software simulators, i.e. an interpreter for interactive operation and
scripting. Parameters and observables should be given in biological
dimensions and follow a biological nomenclature. Moreover, drawing
the attention of the neuroscience community to neuromorphic hard-
ware can be strongly facilitated by the possibility of porting existing
software simulation setups to the hardware with little effort.

Multiple projects and initiatives provide databases and tech-
niques for sharing or unifying neuroscientifi c modeling code, see
for example the NeuralEnsemble initiative (Neural Ensemble, 2009),
the databases of Yale’s SenseLab (Hines et al., 2004) or the soft-
ware database of the International Neuroinformatics Coordination
Facility (INCF Software Database, 2009). Creating a bridge from
the hardware interface to these pools of modeling experience will
provide the important possibility of formulating transparent tests,

1A silicon wafer which will not be cut into single chips as is usual, but left in one
piece. Further post-processing steps will interconnect the disjoint reticles on the
wafer, resulting in a highly confi gurable silicon neural network model of unique
dimensions.
2Currently: LeCroy WaveRunner 44Xi.

Table 1 | The most important hardware model parameters, the type of physical quantity used for their implementation, their confi gurability and an

estimation of uncertainty. The fi rst four columns show their typical biological interpretation and the resulting value ranges. The translation between both

domains depends on the chosen speedup and the desired biological parameter value ranges. The given estimations (some being educated guesses) of

confi guration uncertainty refl ect the current state of available methods to measure, to adjust or to calibrate the values, and may not necessarily refl ect

hardware limitations. The uncertainty of Ee is load-dependent, the relation is not yet suffi ciently analyzed.

 Biological Interpretation Hardware parameter implementation

Param Unit Min Max Physical quantity Confi gurable Estimation of uncertainty (%)

Cm nF 0.2 0.2 Capacitance No 10

Gl nS 20 40 Current Yes 10

El mV −80 −55 Voltage Yes 2

Ei mV −80 −55 Voltage Yes 2

Ee mV −80 20 Voltage Yes Unknown

Vth mV −80 −55 Voltage Yes 5

Vreset mV −80 −55 Voltage Yes 10

τsyn ms 30 50 Current Yes 25

gmax nS 1 100 Current Yes 25

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 4

Brüderle et al. Python interface for neuromorphic hardware

benchmarks and requests that will boost further hardware develop-
ment and its establishment as a modeling tool.

Most software simulators for spiking neuron models come with
an interpreter interface for programming, experiment setup and
control. For example, NEURON (Hines and Carnevale, 2006; Hines
et al., 2009) provides an interpreter called Hoc, NEST (Diesmann
and Gewaltig, 2002; Eppler et al., 2008; Gewaltig and Diesmann,
2007) comes with a stack-based interface called SLI, and GENESIS
(Bower and Beeman, 1998) has a different custom script language
interpreter also called SLI. Both NEURON and NEST also pro-
vide Python (Rossum, 2000) interfaces, as do the PCSIM (PCSIM,
2009; Pecevski et al., 2009), Brian (Goodman and Brette, 2008) and
MOOSE (Ray and Bhalla, 2008) simulators. Facilitating the usage
of neuromorphic hardware for modelers means providing them
with an interface similar to these existing ones. But there are further
requirements arising from hardware specifi c issues.

TECHNICAL REQUIREMENTS
As shown in the Section “Support Framework”, operating the pre-
sented neuromorphic hardware system involves multiple devices
and mechanisms, e.g. Message Queue communication with a user-
space daemon accessing a PCI board, TCP/IP socket connection
to an oscilloscope, software models that control the operation of
the backplane, the carrier board and the VLSI chip itself, and high-
level software layers for experiment defi nition. On the software side,
this multi-module system utilizes C, C++ and Python, and multiple
developers from different institutions are involved, applying various
development styles such as object-oriented programming, refl ec-
tive programming or sequential driver code. The software has to
follow the ongoing system development, including changing and
improving FPGA controller code and hardware revisions with new
features.

This complexity and diversity argues strongly for a top-level
software framework, which has to be capable of effi ciently gluing all
modules together, supporting object-oriented and refl ective struc-

tures, and providing the possibility of rapid prototyping in order
to quickly adapt to technical developments at lower levels.

One further requirement arises: the speedup of the hardware
system can be exploited by an interactive, possibly intuition-guided
work fl ow which allows the exploration of parameters with imme-
diate feedback of the resulting changes. This implies the wish to
have the option of a graphical interface on top of an arbitrary
experiment description.

EXISTING INTERFACES
Descriptions in the literature of existing software interfaces to neu-
romorphic hardware are very rare. In Merolla and Boahen (2006),
the existence and main features of a GUI for the interactive opera-
tion of a specifi c neuromorphic hardware device are mentioned.

Much more detailed software interface reports are found in Dante
et al. (2005). They describe a framework which allows exchange of
AER3 data between hardware and software while experiments are
running. The framework includes a dedicated PCI board which
is connected to the neuromorphic hardware module and which
can be interfaced to Linux systems by means of a device driver.
A C-library layered on top of this driver is available. Using this,
a client-server architecture has been implemented which allows
the on-line operation of the hardware from within the program
MATLAB. The use of MATLAB implies interpreter-based usage,
scripting support, the possible integration of C and C++ code,
optional graphical front-end programming and strong numerical
support for data analysis. Hence, most of the requirements listed
so far are satisfi ed. Nevertheless, the framework is somewhat stand-
alone and does not facilitate the transfer of existing software models
to the hardware.

In Oster et al. (2005), an automatically generated graphical front-
end for the manual tuning of hardware parameters is presented,
including the convenient storing and loading of confi gurations.

3Address Event Representation.

PC

digital

analog

Computer Network

Oscilloscope

Backplane

Carrier boards

Neural Network Chip

FIGURE 1 | Schematic of the accelerated FACETS hardware

system framework. Via a digital connection, software running on the
host computer can control the parameters of any neural network chip
mounted on a carrier board on the communication backplane. It can

stimulate the network with externally generated spikes and can record
spikes generated on the chip. Analog sub-threshold information acquired with
an oscilloscope can be integrated into the software via a network
connection.

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 5

Brüderle et al. Python interface for neuromorphic hardware

Originally, a similar approach was developed for the hardware sys-
tem utilized here, too (Brüderle et al., 2007). Manually defi ning
parts of the enormous parameter space provided by such a chip via
sliders and check-boxes can be useful for intuition-guided hard-
ware exploration and circuit testing, but it turns out to be rather
impractical for setting up large network experiments as usually
performed by computational neuroscientists.

CHOOSING A PROGRAMMING LANGUAGE
Except for the convenient portability of existing experiment set-
ups, an interface to the neuromorphic hardware system based on
the programming language Python solves all of the requirements
stated in the Sections “Importance of the Software Interface” and
“Technical Requirements”, especially the hardware-specifi c ones.
Python is an interpreter-based language with scripting support,
thus it is able to provide a software-simulator-like interface. It can
be effi ciently connected to C and C++, for example via the pack-
age Boost.Python (Abrahams and Grosse-Kunstleve, 2003). Python
supports sequential, object-oriented and refl ective programming
and it is widely praised for its rapid prototyping. Due to the pos-
sibility for modular code structure and embedded documentation,
it has a high maintainability, which is essential in the context of a
quickly evolving project with a high number of developers.

In addition to its strengths for controlling and interconnect-
ing lower-level software layers, it can be used to write effi cient
post-processing tools for data analysis and visualization, since a
wide range of available third-party packages offers a strong foun-
dation for scientifi c computing (Jones et al., 2001; Langtangen,
2008; Oliphant, 2007), plotting (Hunter, 2007) and graphics (Lutz,
2001, Chapter 8; Summerfi eld, 2008). Hence, a Python interface
to the hardware system would already greatly facilitate modeler
adoption.

Still, the possibility of directly transferring existing experiments
to the hardware is even more desirable; a unifi ed meta-language
usable for both software simulators and the hardware could achieve
that. Thus, the existence of the Python-based, simulator-independ-
ent modeling language PyNN (see PyNN and NeuroTools) was the
strongest argument for utilizing Python as a hardware interface,
because the subsequent integration of this interface into PyNN
depended on the possibility of accessing and controlling the hard-
ware via Python.

Possible alternatives to Python as the top layer language for the
hardware interface have been considered and dropped for different
reasons. For example, C++ requires a good understanding of mem-
ory management, it has a complex syntax, and, compared to inter-
preted languages, has slower development cycles. Interpreter-based
languages such as Perl or Ruby also provide plotting functionality,
numerical packages (Berglihn, 2006; Glazebrook and Economou,
1997) and techniques to wrap C/C++ code, but eventually Python
was chosen because it is considered to be easy to learn and to have
a clean syntax.

PYNN AND NEUROTOOLS
The advantages of Python as an interface and programming lan-
guage are not limited to hardware back-ends. For the software
simulators NEURON, NEST, PCSIM, MOOSE and Brian, Python
interfaces exist. This provides the possibility of creating a Python-

based, simulator-independent meta-language on top of all these
back-ends. In the context of the FACETS project, the open-source
Python module PyNN has been developed which implements such
a unifi ed front-end (see Davison, 2009; Davison et al., 2008).

PyNN offers the possibility of porting existing experiments
between the supported software simulators and the FACETS hardware
and thus to benchmark and verify the hardware model. Furthermore,
on top of PyNN, a library of analysis tools called NeuroTools (2009)
is under development, exploiting the possibility of a unifi ed work
fl ow within the scope of Python. Experiment description, execution,
result storage, analysis and plotting can be all done from within the
PyNN and NeuroTools framework. Independent of the used back-
end, all these steps have to be written only once and can then be run
on each platform without further modifi cations.

Especially since the operation of the accelerated hardware gener-
ates large amounts of data at high iteration rates, a sophisticated
analysis tool chain is necessary. For the authors, as well as for every
possible PyNN user, making use of the unifi ed analysis libraries
based on the PyNN standards (e.g. NeuroTools) avoids redun-
dant development and debugging efforts. This benefi t is further
enhanced by other third-party Python modules, like numerical or
visualization packages.

INTERFACE ARCHITECTURE
The complete software framework for interfacing the FACETS hard-
ware is structured as follows: Various C++ classes encapsulate the
functionality of the neural network chip itself, of its confi guration
parameter set, of the controller implemented on the carrier board
FPGA, and of the communication protocol between the host soft-
ware and this controller. There is a stand-alone daemon written in
C++ which provides the transport of data via the PCI card. It utilizes
a device-driver which is available for Linux systems. Furthermore,
there is a C++ class which encapsulates the TCP/IP Socket com-
munication with the oscilloscope.

The Boost.Python library (Boost.Python, 2003) is used to bind
C++ classes and functions to Python. An instructive outline of the
wrapping technique used can be found in Abrahams and Grosse-
Kunstleve (2003).

On top of these Python bindings, a pure Python framework
called PyHAL4 (Brüderle et al., 2007) provides classes for neurons,
synapses and networks. All these classes have model parameters
in biological terminology and dimensions, and their constructors
impose no hardware specifi c constraints.

The main functionality of PyHAL is encapsulated by a hard-
ware access class which implements the exchange layer between
these higher-level objects and the low-level C++ classes exposed to
Python via Boost. The hardware access layer performs the transla-
tion from biological parameters like reversal potentials, leakages,
synaptic time constants and weights to the available set of hardware
confi guration parameters. This set consists of discrete integers, for
example for the synaptic weights, and of analog values for currents
and voltages. Some of these parameters do have a direct biological
counterpart, some do not. For example, neuron voltage param-
eters like reversal potentials are mapped linearly to the available
 hardware membrane potential range of approximately 0.6–1.4 V,

4Python Hardware Abstraction Layer.

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 6

Brüderle et al. Python interface for neuromorphic hardware

while membrane leakage conductances and synaptic time constants
have to be translated into currents.

The translation layer also performs the transformation from
biological to hardware time domain and back. Furthermore, all
hardware-specifi c constraints, like the limited number of possi-
ble neurons or connections, the fi nite parameter ranges and the
synaptic weight discretization, are incorporated in this hardware
access class, generating instructive warnings or error messages in
case of constraint violations.

Since the PyHAL framework is all Python code, it provides the
desired interpreter-based interface to the hardware, correspond-
ing to comparable Python interfaces to, for example, NEST or
PCSIM. Also, as for these software simulators, a module for the
integration of this interface into the meta-language PyNN has been
implemented. Figure 2 shows a schematic of the complete software
framework with its most important components.

Thanks to this integration, all higher-level PyNN concepts like
populations and inter-population projections plus the analysis and
visualization tools developed on top of PyNN are now available for
the hardware system.

Still, the integration of the hardware interface into PyNN also
raises problems. Some of the PyNN API function arguments are
specifi c to software simulators. In the hardware context, they have
to be either ignored or be given a hardware-specifi c interpreta-
tion. For example, the PyNN function setup has an argument
called timestep, which for pure software back-ends determines
the numerical integration time step. In the PyNN module for
the continuously operating hardware, this argument defi nes the
temporal resolution of the oscilloscope for membrane potential
recordings. Furthermore, the strict constraints regarding neuron
number, connectivity and possible parameter values require an
additional software effort, i.e. checking for violations and provid-
ing the messages mentioned above. PyNN does not yet suffi ciently
support fast and statistics-intensive parameter space searches with
differential formulations of the changes from step to step, which

will be needed to optimize the exploitation of hardware specifi c
advantages.

Without having access to the real hardware system, it is of course
not possible to use the PyNN hardware module, hence it is not
available for download. Still, it is planned to publicly provide a
modifi ed module on the PyNN website (Davison, 2009) which
allows testing of PyNN scripts intended to be run on the hardware,
i.e. to get back all warnings or error messages which might occur
with the real system. With such a mapping test module, scripts can
be prepared offl ine for a later, optimized hardware run.

THE INTERFACE IN PRACTICE
To demonstrate the usage and functionality of the PyNN interface, a
simple example setup is given in the following. Listing 1 shows the
experiment described in PyNN, which is then executed both on the
hardware system and using the software simulator NEST. A network
consisting of 80 excitatory and 20 inhibitory neurons is created. The
inhibitory sub-population is fed back into the network randomly
with a probability of 0.5 for each possible inhibitory-to-excitatory
connection. 160 excitatory and 40 inhibitory Poisson spike trains
are randomly connected to the network with the same probability
of 0.5 for each possible train-to-neuron connection.

Figure 3 shows a schematic of the implemented network
architecture.

The maximum synaptic conductance gmax is 0.5 nS for excita-
tory and 1.6 nS for inhibitory connections. The output spikes
of eight neurons are recorded, and the average fi ring rate of
these eight neurons over a period of 5 s of biological time is
determined.

In line 1, the PyNN back-end NEST is chosen. In order to utilize
the hardware system, the only necessary change within this script
is to replace line 1 by from pyNN.hardware.stage1 import
*, all the rest remains the same. From lines 4 to 9, the population
sizes, the numbers of external stimuli, and the synaptic weights
are set. In lines 11–17, the neuron parameters are defi ned. Lines 19

PyNN

PyNN.hardware

PyHAL

Spike Train In

Communication Spike Train Out

Chip Model

C++ (Boost.Python wrapper)

PyScope

C++

Chip Config

PyNN.neuron

HOC

NEURON

PyNN.nest

SLI

NEST

Socket Comm

Trace Manager

PyN

???

?

FIGURE 2 | Schematic of the software framework for the operation of the

hardware system. It is integrated into the Python-based, simulator-independent
language PyNN, which also supports back-ends like NEURON, NEST and more.

The module for the hardware back-end consists of Python-based sub-modules
for the digital and analog access to the chip. Each of those wrap the functionality
of lower-level C++ layers, which are described in more detail in the text.

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 7

Brüderle et al. Python interface for neuromorphic hardware

type is possible. For the NEST back-end, the neuron type deter-
mines parameter values for e.g. C

m
, which are fi xed to resemble the

hardware. Line 26 concatenates the two populations. In lines 28
and 29, the Poisson spike sources are generated, passing the type of
source, the previously defi ned parameters and the desired number.
From lines 31 to 34, the neurons and spike generators are intercon-
nected. The arguments of the connect command specify fi rst a list
of sources, then a list of targets, followed by the synaptic weights,
the synapse types and fi nally by the probability with which each
possible pairing of source and target objects is actually connected.
The recording of the spikes of eight neurons and of one membrane

and 20 determine the rate and duration of the Poisson spike train
stimuli. In line 22, PyNN is initialized, the numerical integration
step size of 0.1 ms is passed. If the hardware back-end is chosen, no
discrete step size is utilized due to the time continuous dynamics in
its analog network core, and the function argument is used instead
to determine the time resolution of the oscilloscope, if connected.
In lines 24 and 25, the excitatory and inhibitory neurons are cre-
ated, with the neuron parameters and the size of the populations
as the second and the third arguments.

The fi rst argument, IF_facets_hardware1, specifi es the neu-
ron type to be created. For the hardware system, no other neuron

from pyNN.nest2 import *
OR: from pyNN.hardware.stage1 import *

numInhNeurons = 20
numExcNeurons = 80
numInhInputs = 40
numExcInputs = 160
w_exc = 0.0005 # uS
w_inh = 0.0016 # uS

neuronParams = { ’v_reset’ : -80.0, # mV
’e_rev_I’ : -75.0, # mV
’v_rest ’ : -70.0, # mV
’v_thresh’ : -57.0, # mV
’g_leak ’ : 20.0, # nS
’tau_syn_E’ : 30.0, # ms
’tau_syn_I’ : 30.0 } # ms

inputParameters = { ’rate’ : 5.0, # Hz
’duration’ : 5000 } # ms

setup(timestep=0.1)

n_inh = create(IF_facets_hardware1 ,neuronParams ,n=numInhNeurons)
n_exc = create(IF_facets_hardware1 ,neuronParams ,n=numExcNeurons)
net = n_exc + n_inh

i_exc = create(SpikeSourcePoisson ,inputParameters ,n=numExcInputs)
i_inh = create(SpikeSourcePoisson ,inputParameters ,n=numInhInputs)

connect(i_exc ,net ,weight=w_exc ,synapse_type=’excitatory’,p=0.5)
connect(i_inh ,net ,weight=w_inh ,synapse_type=’inhibitory’,p=0.5)

connect(n_inh ,net ,weight=w_inh ,synapse_type=’inhibitory’,p=0.5)

record(net[0:8] , ’spikes.dat’)
record_v(net[0], ’membrane.dat’)

run(5000) # duration in ms
end()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

LISTING 1 | PyNN Example Script. For detailed explanation see text.

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 8

Brüderle et al. Python interface for neuromorphic hardware

potential is prepared in lines 36 and 37 (not all neurons, due to a
bug in the current hardware revision). In line 39, the experiment is
executed for a duration of 5000 ms. Line 40 defi nes the end of the
script, and deals with writing recorded values to fi le.

The experiment was run both on the FACETS hardware sys-
tem and using the software simulator NEST. The fi ring rate of the
stimulating Poisson spike trains was varied from 0 to 9 Hz in steps
of 0.5 Hz, and for each rate the experiment was repeated 20 times
with different random number generator seeds. Figure 4 shows the
resulting average output fi ring rates.

The fi ring rates measured on both back-ends exhibit a qualitative
and, within the observed fl uctuations, quantitative correspondence.
For both NEST and the hardware system, the onset of fi ring activ-
ity occurs at the same level of synaptic stimulation. The small but
seemingly systematic discrepancy for higher output rates indicates
that for the NEST simulation the inhibitory feedback has a slightly

stronger impact on the network activity than on the hardware
platform. The fi ring rate does not refl ect dynamic properties like
fi ring regularity or synchrony, which might be interesting for the
estimation of possible differences in network dynamics due to the
limited precision of hardware parameter determination or due to
electronic noise. With PyNN, studies like these have now become
possible, but go beyond the scope of this paper.

To give an impression of the inhomogeneities of a hardware
substrate and of the noise a typical hardware membrane is exposed
to, a second measurement is shown. A single neuron receives 80
excitatory and 20 inhibitory Poisson spike trains with 2.5 Hz each.
It is connected to these stimuli with the same synaptic weights
as in the setup described above, but gets no feedback from other
neurons. The spike sources fi re for 4 s, with a silent phase of 0.5 s
before and after. Using a single PyNN description, the identical
setup with identical spike times and identical connectivity can be
deployed for both NEST and the hardware system. Figure 5 shows

NEST Simulation

Hardware Neurons

20
m

V
20

0
m

V

10 µs

1 s

FIGURE 5 | Membrane potentials of a neuron under Poisson stimulation.

Input spike times are identical for all traces. The uppermost trace (red)
represents a NEST simulation. Spike times determined by NEST are marked
with dashed vertical lines in light gray. The lower six traces (blue) represent
measurements from adjacent hardware neurons recorded in separate runs.
For the hardware traces, the given time and voltage scales indicate the real
physical dimensions of the emulation.

P=0.5

P=0.5

P=0.5

P=0.5

P=0.5

P=0.5

160 80

40 20

Excitatory Excitatory

Inhibitory Inhibitory
Inputs

Inputs

Neurons

Neurons

FIGURE 3 | Connectivity schematic of the implemented network. An
excitatory and an inhibitory population of Poisson spike train generators
stimulate an excitatory and an inhibitory population of neurons. The inhibitory
population is fed back into itself and into the excitatory one. All inter-population
projections have a unit-to-unit connection probability of 0.5.

1 2 3 4 5 6 7 8 9

5

10

15

20

25

30

35

40

Input Rate [Hz]

A
ve

ra
ge

O
ut

pu
t

R
at

e
[H

z] Hardware
NEST

FIGURE 4 | Average output fi ring rate of the example network neurons as

a function of input rate. The script shown in Listing 1 has been executed with
various stimulation rates on both the hardware system (blue circles) and the
software simulator NEST (red squares). Each data point represents the mean
over 20 runs, the error bars denote the corresponding standard deviations.

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 9

Brüderle et al. Python interface for neuromorphic hardware

the resulting membrane potential trace simulated by NEST and the
membrane potentials acquired from six adjacent neurons on the
neuromorphic hardware. For the hardware traces, the unprocessed
time and voltage scales are given as measured on the chip in order to
illustrate the accelerated and physical nature of the neuromorphic
model. The PyHAL framework automatically performs a transla-
tion of these dimensions into their biological equivalents.

The constant noise level in the hardware traces can be best
observed during the phases with no external stimulation. This noise
is a superposition of the noise actually occurring within the neuron
circuits and the noise being added by the recording devices. The
differences from hardware neuron to hardware neuron represent
mainly device fl uctuations on the transistor level, which strongly
dominate time-dependent infl uences like temperature-dependent
leakages or an unstable power supply. Counterbalancing these fi xed-
pattern effects with calibration methods is work in progress.

DISCUSSION
Today, the communities of computational neuroscientists and neu-
romorphic engineers work rather in parallel instead of benefi tting
from each other. We believe that closing this gap will boost the
development, the usability and the number of application fi elds of
neuromorphic systems, including the establishment of such devices
as valuable modeling tools that will contribute to the understand-
ing of neural information processing. Based on this motivation,
we have described a set of requirements that a software interface
for a neuromorphic system should fulfi ll.

Following these guidelines, we have implemented a Python-
based interface to an existing accelerated neuromorphic hardware
system developed within the research project FACETS, and we have
integrated it into the common neural network simulator interface
PyNN, proving the potential of PyNN to also serve as a hardware
interface. This approach provides the novel possibility of porting
existing experiments from the software simulator to the hardware
domain and vice versa with a minimum of effort. In order to illus-
trate the unifi cation and portability aspects, we have presented
an example PyNN code sequence for a simple experiment. The
correspondence between the results acquired with both a software
simulator and the hardware system demonstrate the functionality
of the framework.

With a neuromorphic device accessible and controllable via
PyNN, its advantages can be exploited by non-hardware-experts
from all fi elds. Hardware and software co-simulations based on
PyNN descriptions can be used to test, to tune and to benchmark
neuromorphic devices. Furthermore, the integration of hardware
interfaces into the PyNN framework can avoid parts of the often
redundant effort that has to be invested into creating a new indi-
vidual software layer stack on top of any new neuromorphic system,
since high-level tools, e.g. for analysis and plotting, are already
available and maintained by an active community.

ACKNOWLEDGMENTS
This work is supported by the European Union under grant no.
IST-2005-15879 (FACETS).

REFERENCES
Abrahams, D., and Grosse-Kunstleve, R. W.

(2003). Building Hybrid Systems with
Boost.Python. Available at: http://
www.boostpro.com/writing/bpl.pdf.

Berge, H. K. O., and Häfl iger, P. (2007).
High-speed serial AER on FPGA. In
ISCAS (IEEE), pp. 857–860.

Berglihn, O. T. (2006). RNUM Website.
Available at: http://rnum.rubyforge.
org.

Bontorin, G., Renaud S., Garenne, A.,
Alvado, L., Le Masson, G., and
Tomas, J. (2007). A real-time closed-
loop setup for hybrid neural networks.
In Proceedings of the 29th Annual
International Conference of the IEEE
Engineering in Medicine and Biology
Society (EMBS2007).

Boost.Python. (2003). Version 1.34.1
Website. Available at: http://www.boost.
org/doc/libs/1_34_1/libs/python.

Bower, J. M., and Beeman D. (1998).
The Book of GENESIS: Exploring
Realistic Neural Models with the
GEneral NEural SImulation System,
2nd Edn. New York, Springer-Verlag.
ISBN 0387949380.

Braden, R. T. (1989). RFC 1122:
Requirements for Internet Hosts–
Communication Layers. Available at:
ftp://ftp.internic.net/rfc/rfc1122.txt.

Brette, R., Rudolph, M., Carnevale, T.,
Hines, M., Beeman, D., Bower, J. M.,

Diesmann, M., Morrison, A.,
Goodman, P. H., Harris, F. C., Jr.,
Zirpe, M., Natschlager, T., Pecevski, D.,
Ermentrout, B., Djurfeldt, M.,
Lansner, A., Rochel, O., Vieville, T.,
Muller, E., Davison, A. P., El
Boustani, S., and Destexhe, A. (2006).
Simulation of Networks of Spiking
Neurons: A Review of Tools and
Strategies. Available at: http://arxiv.
org/abs/q-bio.NC/0611089.

Brüderle, D., Grübl, A., Meier, K.,
Mueller, E., and Schemmel, J. (2007).
A software framework for tuning the
dynamics of neuromorphic silicon
towards biology. In Proceedings of the
2007 International Work-Conference
on Artificial Neural Networks, Vol.
LNCS 4507 (Berlin, Springer Verlag),
pp. 479–486.

Costas-Santos, J., Serrano-Gotarredona, T.,
Serrano-Gotarredona, R., and Linares-
Barranco, B. (2007). A spatial con-
trast retina with on-chip calibration
for neuromorphic spike-based AER
vision systems. IEEE Trans. Circuits
Syst. 54, 1444–1458.

Dally, W. J., and Poulton, J. W. (1998).
Digital Systems Engineering.
Cambridge, Cambridge University
Press. ISBN 0-521-59292-5.

Dante, V., Del Giudice, P., and
Whatley, A. M. (2005). Hardware
and software for interfacing to

address-event based neuromorphic
systems. Neuromorphic Eng. 2, 5–6.

Davison, A. (2009). PyNN – A Python
Package for Simulator-Independent
Specifi cation of Neuronal Network
Models. Available at: http://www.
neuralensemble.org/PyNN.

Davison, A. P., Brüderle, D., Eppler, J.,
Kremkow, J., Muller, E., Pecevski, D.,
Perrinet, L., and Yger, P. (2008).
PyNN: a common interface for
neuronal network simulators.
Front. Neuroinform. 2, 11. doi:
10.3389/neuro.11.011.2008.

Dayan, P., and Abott, L. F. (2001). Theoretical
Neuroscience: Computational and
Mathematical Modeling of Neural
Systems. Cambridge, The MIT Press.
ISBN 0-262-04199-5.

Destexhe, A., Contreras, D., and
Steriade, M. (1998). Mechanisms
underlying the synchronizing action
of corticothalamic feedback through
inhibition of thalamic relay cells. J.
Neurophysiol. 79, 999–1016.

Diesmann, M., and Gewaltig, M.-O.
(2002). NEST: an environment
for neural systems simulations. In
Forschung und wisschenschaftliches
Rechnen, Beiträge zum Heinz-Billing-
Preis 2001, Vol. 58, GWDG-Bericht,
Theo Plesser and Volker Macho,
eds (Göttingen, Ges. für Wiss.
Datenverarbeitung), pp. 43–70.

Ehrlich, M., Mayr, C., Eisenreich, H.,
Henker, S., Srowig, A., Grübl, A.,
Schemmel, J., and Schüffny, R. (2007).
Wafer-scale VLSI implementations
of pulse coupled neural networks.
In Proceedings of the International
Conference on Sensors, Circuits and
Instrumentation Systems.

Eppler, J. M., Helias, M., Muller, E.,
Diesmann, M., and Gewaltig, M.-
O. (2008). PyNEST: a convenient
interface to the NEST simula-
tor. Front. Neuroinform. 2, 12. doi:
10.3389/neuro.11.012.2008.

FACETS (2009). Fast Analog Computing
with Emergent Transient States, Project
Homepage. Available at: http://www.
facets-project.org.

Fieres, J., Grübl, A., Philipp, S., Meier, K.,
Schemmel, J., and Schürmann, F.
(2004). A platform for parallel opera-
tion of VLSI neural networks. In
Proceedings of the 2004 Brain Inspired
Cognitive Systems Conference,
University of Stirling, Scotland.

Fieres, J., Schemmel, J., and Meier, K. (2008).
Realizing biological spiking network
models in a confi gurable wafer-scale
hardware system. In Proceedings of the
2008 International Joint Conference
on Neural Networks.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (NEural Simulation
Tool). Scholarpedia 2, 1430.

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 | 10

Brüderle et al. Python interface for neuromorphic hardware

(Los Alamitos, CA, IEEE Computer
Society), pp. 266–273.

Serrano-Gotarredona, R., Oster, M.,
Lichtsteiner, P., Linares-Barranco, A.,
Paz-Vicente, R., Gómez-Rodríguez, F.,
Riis, H. K., Delbrück, T., Liu, S. C.,
Zahnd, S. , Whatley, A. M.,
Douglas, R. J., Häfl iger, P., Jimenez-
Moreno, G., Civit, A., Serrano-
Gotarredona, T., Acosta-Jiménez, A.,
and Linares-Barranco, B. (2006). AER
building blocks for multi-layer multi-
chip neuromorphic vision systems.
In Advances in Neural Information
Processing Systems 18, Y. Weiss, B.
Schölkopf, and J. Platt, eds (Cambridge,
MIT Press), pp. 1217–1224.

Summerfield, M. (2008). Rapid GUI
Programming with Python and Qt.
Prentice Hall, Upper Saddle River,
NJ, ISBN 0132354187.

Vogelstein, R. J., Mallik, U., Vogelstein, J. T.,
and Cauwenberghs, G. (2007).
Dynamically reconfigurable silicon
array of spiking neuron with con-
ductance-based synapses. IEEE Trans.
Neural Netw. 18, 253–265.

Conflict of Interest Statement: The
authors declare that the research pre-
sented in this paper was conducted in the
absence of any commercial or fi nancial
relationships that could be construed as
a potential confl ict of interest.

Received: 14 September 2008; paper pend-
ing published: 23 December 2008; accepted:
09 May 2009; published online: 05 June
2009.
Citation: Brüderle D, Müller E, Davison A,
Muller E, Schemmel J and Meier K (2009)
Establishing a novel modeling tool: a python-
based interface for a neuromorphic hard-
ware system. Front. Neuroinform. (2009)
3:17. doi:10.3389/neuro.11.017.2009
Copyright © 2009 Brüderle, Müller, Davison,
Muller, Schemmel and Meier. This is an
open-access article subject to an exclusive
license agreement between the authors and
the Frontiers Research Foundation, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original authors and source are credited.

Glazebrook, K., and Economou, F.
(1997). PDL: The Perl Data Language.
Dr. Dobb’s Journal. Available at: http://
www.ddj.com/184410442.

Goodman, D., and Brette, R. (2008). Brian:
a simulator for spiking neural net-
works in Python. Front. Neuroinform.
2, 5. doi: 10.3389/neuro.11.005.2008.

Grübl, A. (2007). VLSI Implementation
of a Spiking Neural Network. PhD
Thesis, Heidelberg, Ruprecht-
Karls-University. Available at:
http://www.kip.uni-heidelberg.
de/Veroeffentlichungen/details.
php?id = 1788. Document No. HD-
KIP 07-10.

Häfl iger, P. (2007). Adaptive WTA with
an analog VLSI neuromorphic learn-
ing chip. IEEE Trans. Neural Netw. 18,
551–572.

Hines, M. L., and Carnevale, N. T. (2006).
The NEURON Book. Cambridge,
Cambridge University Press. ISBN
978-0521843218.

Hines, M. L., Davison, A. P., and
Muller, E. (2009). NEURON and
Python. Front. Neuroinform. 3, 1. doi:
10.3389/neuro.11.001.2009.

Hines, M. L., Morse, T., Migliore, M.,
Carnevale, N. T., and Shepherd, G. M.
(2004). ModelDB: a database to sup-
port computational neuroscience. J.
Comput. Neurosci. 17, 7–11.

Hunter, J. D. (2007). Matplotlib: a 2D
graphics environment. IEEE Comput.
Sci. Eng. 9, 90–95.

IEEE (2004). Standard for Information
Technology – Portable Operating
System Interface (POSIX). Shell
and Utilities. Technical Report,
IEEE. Available at: http://iee-
explore. ieee .org/xpls/abs_al l .
jsp?arnumber = 1309816.

INCF Software Database (2009). Website.
Available at: http://software.incf.net.

Jones, E., Oliphant, T., Peterson, P. et al.
(2001). SciPy: Open Source Scientifi c
Tools for Python. Available at: http://
www.scipy.org/.

Langtangen, H. P. (2008). Python
Scripting for Computational Science,
3rd Edn. (Berlin, Springer). ISBN
978-3-540-73915-9.

LeCroy (2005). X-Stream Oscilloscopes–
Remote Control Manual. Technical
Report Revision D, New York, LeCroy
Corporation. Available at: http://
lecroygmbh.com.

Lutz, M. (2001). Programming Python:
Object-Oriented Scripting. Sebastopol,
O’Reilly & Associates, Inc. ISBN
0596000855.

Mead, C. A. (1989). Analog VLSI and
Neural Systems. Reading, Addison
Wesley.

Mead, C. A., and Mahowald, M. A. (1988).
A silicon model of early visual process-
ing. Neural Netw. 1, 91–97.

Merolla, P. A., and Boahen, K. (2006).
Dynamic computation in a recurrent
network of heterogeneous silicon neu-
rons. In Proceedings of the 2006 IEEE
International Symposium on Circuits
and Systems.

Morrison, A., Aertsen, A., and Diesmann, M.
(2007). Spike-timing-dependent plas-
ticity in balanced random networks.
Neural Comput. 19, 1437–1467.

Morrison, A., Mehring, C., Geisel, T.,
Aertsen, A., and Diesmann, M.
(2005). Advancing the boundaries of
high connectivity network simulation
with distributed computing. Neural
Comput. 17, 1776–1801.

Neural Ensemble (2009). Website. Available
at: http://neuralensemble.org.

NeuroTools (2009). Website. Available
a t : h t t p : / / n e u r a l e n s e m b l e .
org/trac/NeuroTools.

Oliphant, T. E. (2007). Python for scien-
tific computing. IEEE Comput. Sci.
Eng. 9, 10–20.

Oster, M., Whatley, A. M. Liu, S.-C., and
Douglas, R. J. (2005). A hardware/soft-
ware framework for real-time spiking
systems. In Proceedings of the 2005
International Conference on Artifi cial
Neural Networks.

PCSIM (2009). Website. Available at:
http://www.lsm.tugraz.at/pcsim/.

Pecevski, D. A., Natschläger, T., and
Schuch, K. N. (2009). PCSIM: a
parallel simulation environment for
neural circuits fully integrated with
python. Front. Neuroinform. 3, 11. doi:
10.3389/neuro.11.011.2009.

Philipp, S. (2008). Design and
Implementation of a Multi-
Class Network Architecture for
Hardware Neural Networks. PhD
Thesis, Heidelberg, Ruprecht-Karls
Universität.

Philipp, S., Grübl, A., Meier, K., and
Schemmel, J. (2007). Interconnecting
VLSI Spiking Neural Networks
Using Isochronous Connections. In
Proceedings of the 9th International
Work-Conference on Artifi cial Neural
Networks, Vol. LNCS 4507 (Berlin,
Springer Verlag), pp. 471–478.

Ray, S., and Bhalla, U. S. (2008). PyMOOSE:
interoperable scripting in Python for
MOOSE. Front. Neuroinform. 2, 6. doi:
10.3389/neuro.11.006.2008.

Renaud, S., Tomas, J., Bornat, Y., Daouzli, A.,
and Saighi, S. (2007). Neuromimetic
ICs with analog cores: an alternative
for simulating spiking neural net-
works. In Proceedings of the 2007 IEEE
Symposium on Circuits and Systems.

Rossum, G. V. (2000). Python Reference
Manual: February 19, 1999, Release
1.5.2. iUniverse, Incorporated. ISBN
1583483748.

Schemmel, J., Brüderle, D., Meier, K.,
and Ostendorf, B. (2007). Modeling
synaptic plasticity within networks
of highly accelerated I&F neurons.
In Proceedings of the 2007 IEEE
International Symposium on Circuits
and Systems, IEEE Press.

Schemmel, J., Fieres, J., and Meier, K.
(2008). Wafer-scale integration of ana-
log neural networks. In Proceedings
of the 2008 International Joint
Conference on Neural Networks.

Schemmel, J., Grübl, A., Meier, K., and
Mueller, E. (2006). Implementing syn-
aptic plasticity in a VLSI spiking neural
network model. In Proceedings of the
2006 International Joint Conference
on Neural Networks. IEEE Press.

Schürmann, F. , Hohmann, S . ,
Schemmel, J., and Meier, K. (2002).
Towards an artifi cial neural network
framework. In Proceedings of the 2002
NASA/DoD Conference on Evolvable
Hardware, A. Stoica, J. Lohn, R. Katz, D.
Keymeulen, and R.S. Zebulum, eds

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

