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the  motivation is to produce realistic dendritic structures to be 
used in an electrophysiology simulator, e.g. (Stiefel and Sejnowski, 
2007). The prototypical example of the construction approach is 
L-Systems, a recursive procedure initially invented for modeling 
plant branching structures (Lindenmayer, 1968), which has been 
successfully applied to neural morphologies (Hamilton, 1993; 
Mulchandani, 1995; Ascoli et al., 2001). Other methods have been 
proposed like probabilistic branching models (van Pelt and Verwer, 
1983; Kliemann, 1987), Markov models (Samsonovich and Ascoli, 
2005), Monte Carlo processes (da Fontoura Costa and Coelho, 
2005), or diffusion limited aggregation (Luczak, 2006). But as suc-
cessful as they are in reproducing neuronal shapes, these models 
provide very little insight into the fundamental growth mechanisms 
leading to cortex formation.

Growth models, on the other hand, study the biological mecha-
nisms that underly the generation of neuronal morphology. Many 
interesting agent-based simulations have been published, repro-
ducing various aspects of development, such as cell proliferation 
(Ryder et al., 1999; Shinbrot, 2006), polarization (Samuels et al., 
1996), cell migration (Cai et al., 2006), neurite extension (Kiddie 
et al., 2005), growth cone steering (Goodhill et al., 2004; Maskery 
and Shinbrot, 2005; Krottje and van Ooyen, 2007), fasciculation 
(Hentschel and van Ooyen, 1999) and synapse formation (van 
Ooyen and Willshaw, 1999; Stepanyants et al., 2008). Mean fi eld 
models have also been proposed, for instance to study axon gui-
dance and map formation (Reber et al., 2004; de Gennes, 2007). 

INTRODUCTION
During the past two decades Computational Neuroscience has 
developed sophisticated methods for simulating physiology of 
neurons (Markram, 2006; Izhikevich and Edelman, 2008). This 
progress has been partly due to advances in computational resour-
ces as well as our improved understanding of the basic principles 
of electrophysiology. But importantly, this approach has been 
facilitated by the development of robust simulation packages 
such as NEURON (Hines and Carnevale, 1997) and GENESIS 
(Bower and Beeman, 1995). By providing neuroscientists with 
the building blocks and the environment in which to assemble 
their own neuronal and network models, these programs have 
relieved scientists from the enormous task of writing complicated 
computational frameworks themselves, and have left them free 
to concentrate on productive simulation of experimental data. 
Similarly, researchers in other areas of biology now also have 
at their disposal powerful modeling environments, for instance 
for the study of biochemical pathways (Alves et al., 2006). The 
simulation package CX3D that will be described here, offers an 
analogous tool that can be used to simulate the growth of neu-
rons in 3D.

There are two major approaches to the simulation of neural 
development: construction algorithms, and biologically-inspired 
growth processes. The construction approach aims to reproduce 
the geometrical properties of real neurons, and not at understan-
ding the biological processes underlying neural growth. Often 
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Unfortunately, all these studies were conducted within different 
frameworks, which prevents the comparison, or the combination 
of several computational models in larger simulations.

In addition to allowing for simulations of various aspects of 
development, a general purpose simulation platform should also 
emulate the physics of developing tissues, namely mechanics and 
diffusion. Mechanical forces infl uence both structural properties 
(such as cell densities and macroscopic architecture; Hilgetag 
and Barbas, 2006) and functional properties (via infl uences on 
intracellular biochemical pathways, a mechanism called mecha-
notransduction; Huang et al., 2004) of developing tissues. For 
instance in neurons, the tension in a neurite infl uences its 
shape (Shefi  et al., 2004), and its growth rate (Dennerll et al., 
1989), and can determine between an axonal vs. dendritic fate 
(Lamoureux et al., 2002). In addition to mechanics, the deve-
lopment of biological tissues depends strongly on the ability of 
cells to communicate and infl uence one another, either by con-
tact (Kageyama et al., 2008) or by release of diffusible signaling 
molecules (Chilton, 2006).

CX3D is an open-source software written in Java for modeling 
all stages of corticogenesis, such as cell division and migration, 
extension of axonal and dendritic arbors, and establishment of 
synaptic connections. It provides a simulated physical space gover-
ned by a physics engine which computes the forces between objects, 
and the diffusion of substances through the extracellular space. 
With this framework, we successfully simulated three important 
developmental processes: the division and migration of neural pre-
cursors to form the cortical plate in an inside-out sequence; the 
differentiation of pyramidal cells forming layer-specifi c branching 
patterns guided by diffusible guidance cues; and the growth of 
cultured dissociated neurons forming a connected network. The 
source code and a user tutorial are freely available at http://www.
ini.uzh.ch/projects/cx3d/.

MATERIALS AND METHODS
ORGANIZATION OF THE EXTRACELLULAR SPACE
Neighborhood relation
Neurons in our simulator are composed of discrete physical com-
ponents such as spheres (somata) and cylinders (neurites), each 
located at a particular point in 3D space, where they interact locally 
with one another, simulating the physical and biological processes 
occurring in the tissue (Figure 1). Each evaluation for a possi-
ble interaction between object i and j has a computational cost. 
Clearly, to evaluate each possible pair (i, j) at each time step would 
become prohibitively expensive as the number and complexity of 
the neurons grow. Instead, we maintain for each object a list of 
neighboring objects with which it might interact. This list is upda-
ted when an object moves, or when an object is added or deleted 
from the space.

To defi ne this neighborhood relation we use a 3D Delaunay 
triangulation (Schaller and Meyer-Hermann, 2004). Given a set P 
of points in 2D, a triangulation T is a collection of non-overlapping 
triangles whose vertices coincide with the members of P, that covers 
the convex hull formed by P. The points and the edges of the triangle 
defi ne a graph structure. Two points are defi ned as neighbors if 
and only if there is at least one triangle t ∈ T of which both are a 
vertex, i.e. if they share a common edge in the graph. The Delaunay 

FIGURE 1 | Typical CX3D simulation. The fi gure shows the result of a 
simulation in which two neurons extend dendritic (red) and axonal (black) 
arbors in a dense cortical column, according to the model specifi cation 
described in Figure 7. The physics engine prevents a branch from passing 
through another cell. (Half of the cells in the column were removed for better 
visualization). The 3D rendering was obtain by exporting the result of the CX3D 
simulation into the free program Blender (http://www.blender.org). The mesh 
used for the rendering was created with the free java-based software 
ImageJ3DViewer (http://www.neurofl y.de/ImageJ3DViewer).

http://www.ini.uzh.ch/projects/cx3d/
http://www.blender.org
http://www.neurofl y.de/ImageJ3DViewer
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triangulation is a special triangulation, defi ned by the condition 
that no point of P is inside the circumsphere of any triangle of T. 
In 3D, the method generalizes to the Delaunay tetrahedralization, 
where a set of points in space defi nes a set of tetrahedrons (for 
simplicity, we will nevertheless use the term triangulation even in 
the 3D case). In our framework, each discrete object is associated 
with a vertex in a 3D triangulation. CX3D uses the package Dyna3D 
written by Goehlsdorf1.

If the cell density is very low, it might happen that two physical 
objects far apart are considered as being neighbors, just because 
there is no other object between them. In this situation, for com-
putational reasons, the user might want to add additional ‘empty’ 
vertices to the triangulation, so that physical interactions between 
pairs of remote objects are not evaluated (Figures 2A,B).

Diffusion processes
For the simulation of diffusion, we use an approach similar to 
the fi nite volume method (Barth and Ohlberger, 2004). The 
extracellular space is decomposed into small non overlapping 
domains. When a physical object secretes a certain quantity of a 
signaling substance, the concentration of this substance increases 
in the domain containing this object. Let i and j be two compart-
ments with respective volume V

i
 and V

j
, containing the amount 

Q
i
 and Q

j
 of a given substance (hence the concentrations are 

u
i
 = Q

i
/V

i
 and u

j
 = Q

j
/V

j
). If they are in contact, Fick’s fi rst law 

tells us that the net fl ux J
i→j

 (in units of quantity per time) going 
from i to j is:
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S

d
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ij

ij
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where D is the diffusion coeffi cient of the substance, S
ij
 the area of 

contact between the compartments and d
ij
 the distance between 

their centers.
A fi rst approach would be to multiply the fl ux J

i→j
 by the simu-

lation time step Δt to compute the quantity transfered from i to j 
during the time step, to subtract it from Q

i
 and add it to Q

j
. The 

new concentrations could be found by dividing the new quantities 
by the respective volumes. Using this formula in our simulation is 
equivalent to the Euler explicit method. But it comes with a very 
high risk of overshoot if the time steps are too large, especially 
in our case with an irregular decomposition of space. It is thus 
preferable to solve analytically the diffusion between each pair of 
neighbors: Remembering that Q

x
 and u

x
 vary with time, we obtain 

the following ordinary differential equation:

d
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FIGURE 2 | 2D illustration of the Delaunay triangulation and its dual 

graphs. (A) Each discrete physical object (blue) in the simulation is linked to a 
vertex in the Delaunay triangulation (green). Additional vertices represent empty 
regions of space. Two objects are considered as being neighbors when their 
vertices are linked by an edge. (B) When existing objects move or are deleted, or 
when new objects are created, their associated Delaunay vertex is automatically 
moved, deleted or inserted, and the triangulation locally updated. (C) The Voronoi 
graph (orange) is an example of a dual graph used to defi ne a vertex-centered 
volume decomposition based on the Delaunay triangulation. The volume around 
each vertex contains every point in space that is closer to this vertex than to any 

other. (D) Another dual graph: the median dual graph is the set of lines joining 
the centroids (or barycenters) of all edges and triangles adjacent to a vertex (in 
3D: all the edges, triangular faces and tetrahedrons adjacent to a vertex). (E) In 
the fi nite volumes method, for a given substance, only the average 
concentration ui(t) over a domain Vi is known. The total quantity Qi(t) of the 
substance inside the domain is equal to ui(t)·Vi (the volume of the orange 
column). If the domain is defi ned by the median dual graph, a linear vertex-
centered function with peak of ui contains exactly the same quantity (volume of 
the green pyramid). This representation is extremely convenient when we have 
to interpolate the concentration outside the vertices.

1http://www.ini.uzh.ch/~dennis
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To get rid of the dependence on the quantity in the  compartment j, 
we defi ne the total amount T = Q

i
 + Q

j
 that is time-invariant. We 

can now solve the equation above and obtain:

Q t Ke
n

mi
mt( ) = +−  (3)

with m D n DS
d V V

S
d

T
Vj i j

= + =( ) ,1 1  and  and the integration constant 
K Q ti

n
m= −( ) .0

The median dual graph
The Delaunay triangulation that we use for near-object detection 
already provides us with a decomposition of space in discrete volu-
mes (the tetrahedrons). But since all substances are produced and 
probed at the vertices of the triangulation (where the cell elements 
are located), it makes sense to use a dual graph, i.e. another decom-
position containing the Delaunay nodes in the center of its volumes. 
The most popular graph with this property is the Voronoi graph 
(Figure 2C), but for computational reasons we use the median 
dual graph (Figure 2D). Firstly because it is not necessary to 
compute the boundaries of a domain to compute its volume (it’s 
simply one-fourth of the volume of the adjacent tetrahedrons). 
Secondly, because if we consider that the average concentration 
u

i
(t) for domain i given by the fi nite volumes method corresponds 

to the real concentration at the vertex position, and that we use 
linear interpolation between the vertices to defi ne the concentra-
tion elsewhere, we get a better numerical approximation with the 
median dual graph (Figure 2E).

To defi ne the gradient on the Delaunay vertices, we recall that 
the directional derivative of the concentration u at the point x

i
 

along the unitary vector ê is equal to the dot product of ê with the 
gradient of u at x

i
:

D u ui iˆ ( ) ˆ ( )e x e x= ⋅ ∇  (4)

We can approximate the directional derivative at x
i
 along a vector 

pointing to any neighbor vertex x
j
 by taking the difference of the 

two concentrations divided by the distance between them. With 
three different x

j
, we obtain a system of three equations that we 

solve to fi nd the three components of the gradient at x
i
:

∇ ⋅ − = − , = , , .u u u ji j i j i( ) ( ) ( ) ( ) { }x x x x x for 1 2 3  (5)

The smaller the volumes of the dual graph are, the better the 
precision of the diffusion simulation. This is another justifi cation 
for having additional vertices added to the Delaunay graph even 
in absence of physical objects at that location.

Figure 3A shows a test system introduced to illustrate the perfor-
mance of our simulator on various aspects of diffusion. It consists of 
500 vertices randomly distributed into a 200 × 200 × 200 µm3 cubic 
volume. The points are triangulated, with the median dual graph 
defi ning 500 volumes surrounding the vertices. Inside each discrete 
volume, we place a precise quantity of three diffusible substances in 
order to get a desired concentration, varying with the position of 
the vertex along one spatial dimension: The concentration profi le 
of chemical R (red) is a step function, of G (green) a linear function 
and of B (blue) a cosine. Figures 3B,C show the evolution of the 
concentration profi les over time due to diffusion.

Chemical reactions
In addition to diffusion and secretion by cells, the substances in 
the extracellular space are subject to concentration changes due to 
degradation and possibly other chemical reactions. Degradation 
is processed together with diffusion (a diffusion and a degrada-
tion constant can be specifi ed for each extracellular substance). To 
introduce chemical reactions, the user has the possibility to defi ne 
changes of concentrations that are applied at each time step on 
each discrete volume of the extracellular space.

As an illustration, we implemented in our test system the reac-
tion R G Bk

k+
−1

1  (with k
1
 = 10 and k−1

 = 0.5), which corresponds 
to the combination of one molecule of the red and one molecule of 
the green substance forming one molecule of the blue substance, 
by applying the following concentration changes in each volume 
at each time step:

− = − = = − .−
d R

dt

d G

dt

d B

dt
k R G k B

[ ] [ ] [ ]
[ ][ ] [ ]1 1  (6)

Figures 3D,E show the result without and with concurrent dif-
fusion respectively.

Infl uence of grid deformations on the concentration profi le
Modifi cations of the Delaunay mesh have dramatic effects on the dual 
graph that we use to numerically solve diffusion. Thus we needed to 
incorporate a mechanism to automatically redistribute the different 
quantities of substances after each operation on the triangulation 
(physical object displacement, duplication or removal). The two 
major requirements are to preserve the concentration profi les, and to 
ensure mass conservation. Consider the case where the Delaunay ver-
tex at position x

i
 moves. If we didn’t update the quantity of substance 

located inside the surrounding volume, moving the point would 
result in substance transport. Our update mechanism consists of two 
phases: fi rst we interpolate the concentration u′

i
 of the chemical at 

the new location x′
i
 of the moving vertex, and modify the quantity in 

the newly formed volume V ′
i
 to obtain this desired concentration, i.e. 

defi ne new Q′
i
 so that Q′

i
/V ′

i
 = u′

i
. Then we compensate for total mass 

conservation by multiplying the concentrations and the quantities 
in the surrounding volumes by the ratio between the total quantities 
before and after the displacement. Similar update mechanisms are 
used for vertex insertion or removal.

The procedure is tested in our bench test by moving three inner 
vertices 100 times (Figure 3F). The displacement is a random 3D 
vector of less than 5 µm, with a re-centering mechanism to ensure 
that the points stay inside the convex hull of all other points. This 
minimally disruptive procedure allows for gradient ascent even in the 
extreme case where all physical objects are moving (Figure 3G).

MECHANICAL PROPERTIES OF NEURONS
The complex shape of neurons, composed of dendritic and axo-
nal arbors, makes the computation of their mechanical properties 
and interactions a diffi cult task. Following a technique that is used 
commonly in mechanical engineering and virtual reality contexts 
(Ng and Grimsdale, 1996; Ward et al., 2007), neurons in CX3D 
are composed of chains of springs and masses in series to provide 
structural integrity and propagate tension. Spherical and cylindrical 
wrappers enclose the spring-mass chain to confer volume on the 
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cell and defi ne spatial interactions between neighboring objects. 
Each wrapper is an independent object containing a single point 
mass. At each time step, it computes the local forces on its point 
mass and moves it accordingly.

Somata are defi ned by a sphere with a central point mass, whe-
reas neurites are composed of cylinders, each containing one spring 
and one point mass at its distal end (Figure 4). The disadvantage of 
this confi guration is the asymmetry of the cylinders. The substantial 
advantage, on the other hand, is that we can neglect rotations of 
cylinders. Indeed each one is responsible for moving only its distal 
end (where the point mass is located), whereas its proximal end 
is defi ned by the position of its attachment point on the proximal 
discrete object. During neurite extension, some cylindrical elements 

are elongated. If their length exceeds a specifi ed threshold, they split 
into two elements. Similarly, in case of retraction, short cylinders 
fuse. By this mechanism we ensure the suitable discretization of 
the cell. This discretization also permits intracellular diffusion. The 
simulation is performed in a similar way as for extracellular diffu-
sion, but the volumes are defi ned by the cylinders and the sphere 
composing the neuron, and substances fl ow along the chains of 
elements regardless of the triangulation or its dual graph.

FORCES
Three different types of forces can be applied to each point mass. 
The fi rst type arises from the interaction between the physical 
objects when they come into close contact. The second type is the 

B C

E F

FIGURE 3 | Test system for diffusion and chemical reactions. (A) Initial 
chemical concentrations in the discrete volumes created by the triangulation 
of 500 vertices randomly placed inside a cube. The concentration of three 
substances defi ne a particular profi le, dependent on the volume’s central 
vertex location along the horizontal axis (red substance: step concentration 
profi le; green substance: linear profi le; blue substance: cosine profi le). 
(B) Evolution of the concentration profi les due to diffusion after 50 simulation 
time steps. (C) Concentration profi les after 500 simulation time steps. 
(D) Concentration profi les after 500 simulation time steps due to the 

chemical reaction R G B+  (see text), without diffusion. (E) Concentration 
profi le after 500 steps of the same chemical reaction with diffusion included. 
Compare with diffusion without reaction in (C). (F) Minor alteration in the 
concentration profi les after 100 sequences of movements of three central 
vertices, without diffusion or reaction. (G) Use of diffusion in simulation: 1000 
yellow cells and 1000 violet cells, secreting respectively ‘yellow’ and ‘violet’ 
diffusible cues, are distributed randomly in a 3D volume. They aggregate by 
following the gradient of their cell-type specifi c cue (results after 0, 300, 800 
and 6000 time steps).
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internal tension arising when a neurite is stretched, which is mode-
led by the springs connecting the masses. This internal tension both 
infl uences, and is infl uenced by, metabolic growth. The third type 
of forces represents the active movement of cell elements. It follows 
from the biological properties of the model specifi ed by the user.

Inter-object forces
Cells in a tissue have strong resistance to compression. They also have 
adhesive properties. Consequently they are conveniently modeled as 
a granular medium with additional bindings (Schaller and Meyer-
Hermann, 2005; Shinbrot, 2006). The physical interaction between 
two spherical somata is then a function of their diameter, their relative 
distance, and possibly their expression of adherence molecules.

It is possible for users of CX3D to defi ne their own cell–cell 
interaction function. However, by default a modifi ed version of 
(Pattana, 2006) is used, in which the force from sphere s

i
 onto 

sphere s
j
 contains a repulsive component (preventing two cells to 

overlap) and an attractive component (representing the integrity of 
the tissue and forces resulting from cell adhesion molecules):

F eij

i j

i j

k
rr

r r
= −

+
,

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

δ γ δ ˆ  (7)

where k is the repulsion coeffi cient, γ the attraction coeffi cient, 
r

i
, r

j
 the radii of the spheres, δ the overlap: max(0,r

i
 + r

j
 − dist

ij
), 

and ê the unitary vector pointing from the center of sphere i in 
direction of sphere j.

The radius r
i
 used in the previous equation needs not to be exactly 

the radius of the sphere s
i
. For instance, to reproduce the different 

neuron densities observed one can use larger effective radii, which 

increases the range of interaction and hence pushes cells further 
apart from each other. Or one can use smaller radii for migrating 
cells, and thereby model the possible deformations of moving cells 
that are less perturbed by the surrounding tissue.

In CX3D, we must also consider cylindrical objects, which 
means that there are in fact three different sorts of interactions: 
sphere–sphere, sphere–cylinder and cylinder–cylinder. For instance, 
to compute the interaction between a sphere s

1
 and a cylinder c, we 

defi ne on c a virtual sphere s
2
, and then compute the interaction 

between the two spheres s
1
 and s

2
 as described above.

Cylinders have their unique point mass located at their distal 
end. So, if the inter-object forces applied to a particular cylinder 
only affect its own point mass, it means that only one of its extre-
mities will ever move. Therefore, part of this force has to be tran-
smitted to its proximal segment (i.e. the object responsible for the 
mass situated at the proximal end of the cylinder). This repartition 
of forces along chains of cylinders is essential for stability.

In addition to the attractive component of the inter-object 
interaction, additional specifi c adhesive bonds, permanent or 
transient, can be added between neighboring objects. These links 
consist of additional springs between two discrete physical objects. 
Such links can be used, for example, to stabilize the pre- and post-
synaptic cell elements with respect to one another at the location 
of a synapse.

Intracellular tension
Dennerll et al. (1989) have reported that neurites show passive 
viscoelastic properties when stretched with a force smaller than 
1 nN. During the 10 fi rst minutes they observed two passive phases: 
a rapid increase in length and tension, followed by a damped phase. 
Mechanical models with a spring and a Voigt element (spring and 
dashpot in parallel) or a Burger element fi t these data well. If a 
larger force is applied for a longer time, a third phase is observed in 
which the neurite continues to extend while the tension diminishes, 
sometimes to less than the tension before the application of the 
perturbing force. This third phase corresponds to active growth, 
including reorganization of the cytoskeleton and incorporation of 
membrane components. This phenomenon explains ‘towed growth’ 
(growth not generated by the growth cone).

Our model does not differentiate between the two passive pha-
ses, since we consider only springs in series, which is a reasonable 
approximation to neurite passive mechanical properties (Dennerll 
et al., 1988). The absence of a dashpot is compensated for by the 
use of the overdamped approximation in the equation for move-
ment (see below). The tension vector due to the internal spring in 
a cylinder is thus:

T einternal = − ,k
a r

r
L L

L

ˆ  (8)

where k is the linear spring constant of the neurite, a
L
 the actual 

length of the spring (length of the cylinder), r
L
 the resting length 

of the spring and ê the unitary vector aligned with the central line 
of the cylinder.

The metabolic phase is modeled by changing the resting length 
of the springs; for instance, r

L
 → r

L
 + ΔL for elongation, which auto-

matically decreases the tension. As described above, the number 
of discrete cylinders scales with the length of the neurites. The 

–F

F
Fi–1

Fi

FIGURE 4 | Cartoon representation of the physical discretization and 

inter-object mechanical forces in CX3D. Neurons are discretized into small 
physical objects, composed of a single point mass and a spherical (for the cell 
body) or cylindrical (for the neurite elements) envelope. The envelopes are 
used to defi ne inter-object forces when two objects come into close contact. 
In this example, a cylinder in a neurite (red) and the sphere of an other cell’s 
soma (violet) overlap, which triggers opposite repulsive forces (F and −F). To 
determine the repulsion intensity, we defi ne a virtual sphere (black circle) on 
the cylinder. The forces are proportional to the overlap of the virtual sphere and 
the soma sphere. Spheres have a central point mass, and the force is directly 
applied on it. Cylinders have their point mass at the distal extremity, so only a 
fraction of their inter-object force is applied on it (Fi), while the rest is 
transmitted to the proximal element’s point mass (Fi − 1). In addition, cylindrical 
elements contain a spring which is always attached to another proximal 
element, and propagates tension along the chain of point masses.
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 discretization mechanism is based on the resting length: if it exceeds 
a certain threshold, the cylinder is split into two, each half retaining 
the same tension.

Active displacement
The biological properties specifi ed by users often require the 
active movement of spheres and of neurites’ terminal cylin-
ders, for instance in the case of cell migration or neurite exten-
sion. In this case, an additional force is applied to the physical 
objects’ point mass. The moving objects do not modify their 
trajectories ahead of time in case of an upcoming collision. But 
if after the displacement two objects have come too close (or 
interpenetrate), a repulsive force is triggered between them. 
This system is as stable as trajectory interpolation, but is less 
computationally demanding.

In the case of neurite extension, the displacement of the 
distal point mass must result in an increase in the resting length 
of the corresponding spring (as in towed growth). It has been 
shown (Lamoureux et al., 1989) that the extension rate of an 
axon is proportional to the tension its growth cone is applying, 
in the following sequence: movement → stretching (increase in 
actual length) → increase in tension → active growth (increase 
in resting length). Although we could reproduce this sequence 
in CX3D, for computational reasons we usually take a short cut: 
First the growth cone is moved and then the resting length is set 
in order to obtain the desired tension. Similar mechanisms are 
possible for retraction: A reduction of the resting length will 
induce an increase in tension and then a backward movement 
of the distal point mass. Alternatively, the point mass can be 
moved fi rst, and then the resting length is updated to maintain 
the desired tension.

MOVEMENT
During the simulation, each discrete physical object evaluates all 
instances of the three forces applied to it, and sums them to obtain 
the total force acting on it. If the total force exceeds a certain thre-
shold, the object moves its point mass appropriately (Figure 5). For 
instance, the cylinder i checks if any neighbor in the triangulation 
is exerting a force F

ij
 on it, including possible adhesive bonds b. It 

also takes into account the tension in its internal spring (T
i
) and in 

the springs of the daughter cylinders directly attached distally to it, 
if any (note that a terminal cylinder has no daughters, a cylinder in 
a chain has one daughter and a cylinder proximal to a branching 
point has two daughters).Finally, it might also have some biological 
movement M to take into account:

F F F T T Mi ij
j

b i
k

d
d

ktot

Neighbors Bonds |Daughters

= + + + + .
| | | | |

∑ ∑ ∑  (9)

In classical mechanics, the equation for movement in a medium 
with friction is

mx x F+ = ,∑β  (10)

where x is the acceleration, x the speed, m the mass and β the kinetic 
friction. Neuron elements in a tissue have a low Reynolds number 
(typically 10−7 for a growth cone; Aeschlimann, 2000), which means 
that the ratio of the inertial forces to the viscous forces is low. It is 
then perfectly reasonable to make the overdamped approximation: 
That is, to assume mx 0= . The consequences of this assumption are 
(1) that an element doesn’t move if it is not currently subject to a 
force and (2) that the major obstacle to movement is no longer the 
mass but the friction coeffi cient. Consequently, physical objects in 
CX3D move according to:

A B C

FIGURE 5 | CX3D simulation snapshots demonstrating the mechanical 

interactions in a test system, composed of a chain of cylinders attached to a 

small sphere (red), and three bigger spheres (blue). The total force applied to 
each point mass is represented by a black arrow. (A) We start with the artifi cial 
situation where the chain of cylinders and the three spheres are strongly 
overlapping. This condition triggers a radial force on each of the cylinders’ point 
masses, pushing them outside the spheres. The spheres are subject to the sum 
of the opposite forces, plus the sphere–sphere interactions. (B) After the system 
has started to relax due to objects being displaced, the magnitudes of the forces 

start to diminish. The radial movement of the cylinder point masses has resulted 
in an elongation of the internal springs joining them, which triggers an intra-object 
force that adds to the component due to the object overlap, and hence results in 
a less radial total force on the cylinders. (C) After complete relaxation, there is no 
object overlap anymore, and the distances between the point masses of the 
cylinders chain correspond to the springs resting lengths. Therefore there is no 
force present anymore. For each discrete object in the system, the link to its 
neighbors, defi ned by the 3D Delaunay triangulation is shown (grey). Note the 
additional vertices that are not corresponding to a physical object. 
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βx F= .∑  (11)

In addition, we have a term for static friction that provides a 
threshold for the initiation of movement. If the total force exceeds 
the static friction, then the actual movement is computed using the 
explicit Euler method: Multiplying the speed with the time step to 
obtain the actual displacement:

Δ =
⎛
⎝⎜

⎞
⎠⎟

Δ .∑x F
1

β
t  (12)

IMPLEMENTATION
CX3D is written in Java because it is an object-oriented language; 
it benefi ts from many libraries (for visualization for instance); it 
does not have to be recompiled to run on different platforms; and 
it provides methods for distributing processes across multiple com-
puters, which will be crucial for future development.

Our software design is modular, keeping a clear separation 
between the biological processes on the one hand, and the infra-
structure needed to run the physics and computationally organize 
the simulation on the other hand. Four abstract layers are used in 

the representation of cells (Figures 6A,B and Appendix). In addi-
tion, CX3D contains several utility packages that are not discussed 
in this paper.

To design a particular cellular model, users must write modules 
(small java classes implementing a special interface) that are inser-
ted into the cells to engender their specifi c functionality. There 
are two different types of modules: Local biology modules; and 
cell modules.

Local biology modules represent all the local biological proces-
ses. Each one is attached to a particular physical object (one of the 
spheres or cylinders used to represent the neuron) and reads from 
it physical data such as current volume, tension, or concentration of 
an extracellular substance. Likewise, the module sends instructions 
to the physical object, for example to move, change its shape, or to 
extend a new branch. For instance, the simplest module for per-
forming chemotaxis would repeatedly execute the following three 
steps: (1) query from the associated physical object the gradient of 
an extracellular substance’s concentration, (2) compute a desired 
movement, (3) transmit a movement direction and speed to the 
physical object. CX3D would perform the displacement, update the 
physical values (e.g. defi ne a new length in the case of a cylinder), 
and update the triangulation. If the movement had brought the 

SpaceNode

Triangulation 
Package

PhysicalNode

PhysicalObject

PhysicalCylinderPhysicalSphere

Cell

     CellElement

NeuriteElementSomaElement

CellModule

LocalBiologyModule

has one
has a collection of
derives from 
      (class inheritance)

Cell 314

Cell 271

A

B C D

E F

FIGURE 6 | Program architecture of CX3D. (A) Java class diagram and 
(B) cartoon representation of the four abstract layers used in the representation 
of a cell in the CX3D framework: the Delaunay triangulation defi ning a 
neighborhood relation between space regions and physical objects (green); the 
physical layer containing the classes representing the discrete space regions 
and the physical objects contained in them (blue); the local biology layer, with 
biological elements associated with the physical objects (red), and fi nally the 

higher level biological properties expressed at the cell level (white). See 
Appendix for a detailed description of the java classes. (C–F) Local biology 
modules specifying the simulation properties are associated with specifi c cell 
elements. When new objects are created, the local biology modules can be 
automatically copied according to four different schemes: when cells divide, 
when neurite elements branch, when new neurites are being formed from the 
soma, and during neurite elongation.
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object too close to another physical object, a symmetrical force will 
be applied on both objects at the next time step, possibly pushing 
them away from one another again. Local biology modules can 
be copied automatically into new discrete cell elements in case of 
soma division, new neurite extension, neurite branching, or neurite 
elongation (Figures 6C–F).

Cell modules are used to model biological processes affecting 
the whole cell, such as cell cycles, or gene expression. Because they 
characterize the entire cell, these modules cannot be linked to any 
particular spatially located spheres or cylinders that represent the 
spatial discretization of the cell.

RESULTS
CX3D provides a general framework for various types of neural 
growth simulations. In this section we present fi ve examples of 
different kinds of problems that could be simulated with CX3D. 
Each example was obtained by writing appropriate local biology 
modules and cell modules that provide the biological functiona-
lity required for each case. The fi rst three examples are original 
models, and the fi nal two are previously published models now 
re-implemented in CX3D.

FORMATION OF A LAYERED CORTEX
Our fi rst example models the formation of a layered cortical-
like structure (Figure 7 and Videos S1 and S2 in Supplementary 
Material). During corticogenesis, neuron precursors are generated 
by division of the progenitor cells in the ventricular and subven-
tricular zone (Kriegstein and Noctor, 2004). These precursors 
then migrate radially, climbing along long processes attached 
to the radial glial cells (Rakic, 1972), from which they detach 
before entering the cells that will form the future layer 1 (L1). It 

is remarkable that each generation of neurons migrates through 
all its predecessors, leading to an inside out formation of the 
cortex, with fi rst cells of layer six (L6), then fi ve (L5), four (L4) 
and fi nally three and two (here considered together as L2/3). 
L1 cells are continuously pushed further away from the ventri-
cular zone. The exact control mechanisms for the detachment 
is not clear, but the protein reelin, produced by some L1 cells is 
necessary. We simulated a model in which reelin is the only signal 
present (Cooper, 2008).

The simulation is initialized with an array of 8 by 8 radial glial 
cells, each having a long process that extends vertically through a 
volume of preplate cells (subplate cells and future layer one cells on 
the top). These glial cells divide asymmetrically and form neuronal 
precursors. Depending on time, they form fi rst L6 cells, then L5, L4 
and L2/3 (colored in blue, violet, red and green respectively). The 
neuron precursors have inside their local biological modules the 
instructions to execute the following sequence: (1) To move ran-
domly until they touch a radial fi ber on which they fi x themselves. 
(2) To migrate (distally) along the radial fi ber. (3) To leave the fi ber 
when they encounter an L1 cell, and thus stop their migration. Due 
to the physical properties of the spheres, the neuron precursors split 
the preplate and push the L1 cells, so progressively displacing the 
stopping signal. The fact that we can reproduce the inside-out lami-
nation of the cortex with this extremely simple set of instructions 
highlights the importance of incorporating mechanical interactions 
in the simulation of developmental processes.

LAYER SPECIFIC DENDRITIC GROWTH
The second example (Figures 1 and 8 and Video S3 in 
Supplementary Material) illustrates the use of diffusible  guidance 
molecules and how they can be used to produce layer- specifi c 

A B C D

FIGURE 7 | Simulation of cortical layers formation. The fi gure shows a 
section through a volume of developing tissue. (A) Layer 6 neuron precursors 
(blue) are produced by asymmetrical division of the progenitor cells (larger grey, 
at the bottom). They migrate along radial glial processes (green fi bers). (B) Once 
the neuron precursors detect a contact with the top-most L1 cells (orange), they 
stop their migration by detaching from the radial fi bers. Due to the mechanical 

interactions between cells, the fi rst layer is pushed upward. (C) When L5 
neurons are produced, they follow the same path, passing through L6 cells until 
they contact L1. (D) Similarly with L4 and L2/3. Each generation passes through 
all the predecessors, to form a layered structure. Due to the large mechanical 
forces, a few cells in this simulation end up in the wrong layer, as observed in 
the cortex (Polleux et al., 2001).
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 branching patterns of neurites (Castellani and Bolz, 1997; 
Dantzker and Callaway, 1998). The simulation begins with an 
already-formed three layer cortex that could have been produ-
ced by mechanisms similar to those of the previous example. 
The layers are formed of three different types of cells (L6, L5 
and L4), all secreting a diffusible, layer-specifi c substance (for 
instance each L4 soma produces only the ‘L4’ substance, etc.). 
These substances diffuse through the environment, establishing 
chemical gradients that will guide the development of the axonal 
and dendritic neurites from two test cells inserted in L6, leading 
to a branching pattern that respects the layer specifi city of pyra-
midal cells of layer 6. Namely, a down-going main axonal shaft, 
which produces side branches in L6 that move up to L4, where 
they ramify, and an apical dendrite, also terminating in L4, but 
starting to branch earlier than the axons.

In this simulation, each cell type forming the layers contains a 
single module, responsible for secreting the appropriate substance. 
The diffusion is performed automatically by the physics engine of 
CX3D. For the development of the branches, we wrote two small 
modules modeling the growth-cone functions and inserted them 
into the initial neurites. One of the modules elongates its neurite 
by moving its cylinder point mass either down the gradient of 
the L5 substance (for the axonal main trunk) or up the gradient 
of the L4 substance (for all other branches). The other module 
allows branching to occur with a probability that depends on the 
local concentration of a specifi c substance (L6 for the initial axon, 
L4 for the others branches). Different concentration thresholds for 
branching have been defi ned for the axons and the dendrites, and 
therefore the latter start their ramifi cation earlier. Both modules are 
copied at branch points into the two new daughter growth cones. 
Neurite diameters decrease during elongation and at branch points, 
and the growth stops when the diameter has become smaller than 
a certain threshold.

The purpose of this simulation was not to reproduce exactly the 
morphological properties of specifi c cell types, but rather to illu-
strate the importance of long range inter-cellular communication 
through secretion and detection of diffusible cues.

DISSOCIATED CULTURE
Much can be learned from dissociated cell cultures, because their 
architecture is simpler than cells developing in-vivo, and because 
they are more accessible to imaging technics. Also, by growing cells 
on multiple electrode arrays it becomes possible to selectively record 
from, and to simulate, elements of a network. Some research groups 
have been interested in modeling this neuron–silicon interface, and 
have made growth simulations of neurons on a plate (Massobrio 
et al., 2007).

By restricting the cell movements to a very thin section of 
space, we can reproduce the 2.5D environment of cell cultures 
on a Petri dish. Our next simulation (Figure 9A and Video S4 in 
Supplementary Material) shows 12 isolated cells on a plate, exten-
ding an axon and several dendrites. As in the previous example, 
each terminal neurite element contains a movement module and 
a branching module responsible for the extension of the cells. The 
main difference is that no guidance molecules are produced, so 
leading to the formation of an isotropic network.

This example illustrates two other features of CX3D. First, the 
possibility to change the cell–cell physical force. In this example, by 
increasing the range and the strength of attraction in the interac-
tion between cylinders, we reproduce the fasciculation of neurites 
often observed in cultures. Secondly, the formation of a neuronal 
network: If an axonal neurite element comes into close contact 
with a dendritic neurite element, a synapse is formed with a certain 
probability between the two elements (Stepanyants et al., 2002). 
Neurons and their connections defi ne a network (Figure 9B), whose 
description can be exported as an XML document that  conforms to 

L4

L5

L6

FIGURE 8 | Branching pattern based on extracellular signaling molecules. In 
this simulation, we started with a column of a cortex-like tissue, with three layers 
composed of specifi c cell types (L6, L5 and L4, depicted in medium, dark and light 
grey respectively). Each cell secretes a layer-specifi c diffusible chemical, serving as 

guidance cue for the layer specifi c growth of the axonal and dendritic arbor of two 
test cells. The usual layer preference of typical L6 pyramidal branch could be 
reproduced: an apical dendrite (red) branching at the L5-L4 transition, and a down-
going axon (black), with side branches in L6, moving up to ramify in L4.
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the NeuroML (Goddard et al., 2001) description used for specifying 
electrophysiological simulations. This bridge from developmental 
to electrophysiological simulation offers a valuable tool for scienti-
sts interested in studying electrical activity in developing networks. 
Of course, it would be possible in future to extend CX3D to provide 
direct simulation of electrophysiology.

CONTACT INHIBITION
Lateral inhibition is an important mechanism for selecting – in 
an homogeneous population – individual cells that will adopt 
specifi c characteristics. One of the most studied pathway invol-
ves the transmembrane proteins Delta and Notch, from which 
Collier et al. (1996) published a model: Notch is activated by 
the expression of Delta on the neighboring cells, whereas Delta 
is inhibited by the Notch level on the same cell. Additionally, 

both proteins are subject to exponential decay. This gives rise 
of a pattern of cells with a low Notch and high Delta profi le, 
surrounded by cells with high Notch expression.

Collier et al. (1996) were mainly inspired by observations 
on Drosophila, but the Delta-Notch system is commonly found 
throughout neural systems development, including in the mam-
malian cortex where it is used to determinate which cells will 
acquire a neuronal or a glial fate. Therefore, we took it as a test 
example of how other models can be re-implemented in our 
framework. By doing so, the model originally developed on a 
2D regular grid could be extended to a 3D agent-based ver-
sion (Figure 10). In addition, now that it is coded in CX3D, it 
can be combined with other models in larger simulations. For 
instance to select the cells that will divide in a tissue (Video S5 
in Supplementary Material).

A B

FIGURE 9 | Dissociated culture neurons forming a network. (A) Eleven 
excitatory (grey) and one inhibitory (red) cells are randomly disposed in a 2.5D 
environment. They extend 4–7 neurites; one of them, thinner and growing faster, 
represents the axon. An attractive force between the cell elements induces a 
tendency to fasciculate. After the growth is completed, synaptic connections are 

formed randomly between neighboring axons and dendrites (black links). 
(B) Graph representation of the circuit shown on the left, drawn from a 
NeuroML description of the network, exported from CX3D after the simulation 
(black arrows: excitatory projections; red arrows: inhibitory projections; line 
thickness proportional to the number of synapses between cells).

FIGURE 10 | Simulation of pattern formation by lateral inhibition (surface 

molecules). The simulation starts with a homogeneous population of cells 
expressing equal concentrations of the membrane bound ligand Delta (D) and 
its receptor Notch (N). According to the model of (Collier et al., 1996), each 
cell activates over time N in the neighboring cells, depending on its own 

D level, while decreasing its own D concentration based on its N level. The 
result is the selection by lateral inhibition of cells with a low N and high D. 
Such cells are not contiguous. (Red color intensity proportional to N, 
green proportional to D. Equal level of red and green intensity 
appears yellow).
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Cell elements in CX3D can express membrane-bound substances. 
We designed a local biological module to regulate the  expression for 
Delta (D) and Notch (N), according to the following dynamics:

dN

dt
f D N

dD

dt
g N D

= −

= −

( )

( )

with f(x) = min(1,20x), g(x) = max(0,1 − x) and D is the average 
value of Delta on all the cells in close contact. This example is another 
illustration of the importance of modeling physics in a general pur-
pose simulator (here to detect contact between close neighbors).

INTERNAL RESOURCE COMPETITION
For this last example, we demonstrate the implementation in CX3D 
of a previously published model of neurite outgrowth. Kiddie et al. 
(2005) presented a 2D model based on a production-consumption 
mechanism: the soma produces two substances, tubulin (T) and 
microtubule associated proteins (MAPs), which diffuse intracel-
lularly to the distal branches of the neuron. T accounts for exten-
sion and retraction of growing neurites by polymerization and 
depolymerization of microtubules. MAPs, after transformation into 
several isoforms, regulate the branching probability by modifying 
microtubule stability.

To implement their model in CX3D (Figure 11), we wrote an 
intracellular secretion module for the soma production of T and 
MAPs at a fi xed rate, and a growth cone module which extends 
or retracts based on the local concentration of T, and bifurca-
tes with a probability depending on the concentration of MAPs. 
The growth cone module is copied at each branching point. The 
intracellular diffusion is processed automatically by the physics 
engine of CX3D.

This last example was well-suited to the CX3D framework 
because it relies on local computation by independent agents 
(in this particular case each growth cone’s behavior depends exclu-
sively on its intracellular concentration of T and MAP), and because 
it requires the modeling of physical processes (the intracellular 
diffusion).

PERFORMANCE TESTING
The execution speed of a CX3D simulation depends on the type 
of operations performed (in particular the proportion of physical 
objects that are moving). To test the performance of our framework, 
we present the CPU time required per time step for three different 
models. The simulation time step is 10−2 h, and the speed of actively 
moving cell components is uniformly set at 100 µm/h. All tests were 
performed on a MacBook Pro with a 2.4 GHz Intel Core 2 Duo 
processor, running Java 1.6.0.

The simulation of cell clustering shown in Figure 3G is close 
to the worst case scenario, with each single physical object moving 
at each time step, and each cell element containing a local biology 
module. For 2000 cells and 400 additional triangulation vertices 
(i.e. 2000 PhysicalObjects, LocalBiologyModules, CellElements 
and Cells, and two substances diffusing across 2400 extracellular 
volumes), the initialization, i.e. the creation of all objects with the 
initial triangulation was done in 3.3 s, and the simulation of one 
time step took 400 ms. The images taken at 300 and 800 time steps 
are obtained respectively after 2 and 5 min 20 s. It took much more 
time to have already formed clusters move and fusion into larger 
cells assemblies; the last image taken after 6000 time steps required 
40 min of simulation.

The situation is much more favorable in our model of lateral 
inhibition, where objects don’t move (and thus the triangulation 
is not modifi ed), and where the substances are membrane-bound 
and thus don’t diffuse in the extracellular space. For 2000 cells and 
no additional triangulation vertex, the simulation takes 63 ms per 
time step. The pattern presented in Figure 10 is complete after 400 
time steps, i.e. 25 s.

Most simulations in practice correspond to intermediate cases, 
in which only a fraction of the physical objects are actively moving, 
as for instance in the model presented in Figure 8. For 1800 static 
somata and 100 additional triangulation vertices, with three extra-
cellular substances diffusing, the simulation takes initially 135 ms 
per time step (at an early stage where the growing cells are compo-
sed of 140 non-terminal cylinders plus nine terminal cylinders with 
local biology modules in total). It requires 285 ms per time step at 
a later stage where there are 840 non-terminal cylinders plus 585 
terminal cylinders. The total simulation time was 85 s.

DISCUSSION
Current efforts in developmental neuroscience research focus on 
reductive characterization of specifi c biological processes, such as 
biochemical pathways or gene expression patterns. These studies 
are essential to understand the mechanisms of brain development. 
However, even in the most studied systems, it is often diffi cult to 
understand how the higher level process of brain development 
emerges from interactions between these lower level mechanisms. 
Simulation offers a means of studying these organizational processes 
(van Ooyen, 2003). CX3D, with its physics engine, its multi-agency 

FIGURE 11 | Simulation of branching pattern based on intracellular 

protein concentrations. The fi gure shows a 3D implementation in CX3D of 
the neurite outgrowth model of (Kiddie et al., 2005). Tubulin is produced in the 
soma, diffuses internally and is consumed distally for branch elongation. The 
intracellular concentration is color coded (light pink: higher concentration). 
Additionally, microtubule associated proteins are also secreted at the soma, 
diffuse distally where they are transformed in several isoforms, regulating the 
branching behavior.
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and modular architecture is well suited for exploring these issues in 
neural development. Users describe the simulation specifi cations 
by writing small mechanistic modules that are incorporated into 
the cells, defi ning the biological properties locally or at cell level. 
Using this approach, one can study growth and development in 
simulations of hundreds of cells.

In self constructing systems, the environment (including phy-
sical laws) plays an active role in constraining the local interac-
tions between agents. For instance, our fi rst original simulation 
(Figure 7) showed how a very simple sequence of instructions could 
reproduce the inside-out migration pattern of cortical neurons; but 
the division and migration of neural precursors would have failed 
to produce a layered structure if the inter-cell physical interac-
tions had not participated in displacing the L1 cells upward. This 
result shows that CX3D could also be used for simulating other 
situations where mechanical forces play a major role in nervous 
systems development, for instance the formation of the neural tube 
(Shinbrot, 2006), or cortical folding. In the latter case, a simulation 
might help to distinguish between causes and consequences (see 
for instance the different hypotheses linking cortical folding to 
intra-areal connections or respective cell numbers in supra- and 
infra-granular layers in gyrii and sulcii; VanEssen, 1997; Hilgetag 
and Barbas, 2006; Kriegstein et al., 2006).

In the model presented in Figure 8, we could reproduce a layer-
specifi c branching pattern, because the biological modules active 
in the terminal branches of the neurites could detect the diffusi-
ble signaling molecules produced by other cells. Associated with 
the possibility of expressing and detecting membrane substances, 
it offers the possibility to investigate by simulation a number of 
classical problems in developmental neuroscience, such as optical 
tectum map formation (Goodhill and Richards, 1999; Willshaw, 
2006), midline crossing (Goodhill, 2003), and, of course, more 
accurate models of cortical neuronal development.

These simulation methods demonstrate how morphology and 
function can arise out of implicit rules. For instance in our second 
example (Figure 8), the desired shape of the adult neuron was not 
explicitly specifi ed in the code. Instead, local decisions on whether 
to turn or to branch were taken independently in the growth cones, 
based on local chemical conditions, which lead to the fi nal cell 
architecture. If the guidance cues had been secreted at different 
locations, or if they were absent, the resulting branching pattern 
would have been completely modifi ed. Due to its modularity CX3D 
provides the ability to run the same biological models in different 
test environments, which is a valuable tool for a modeler interested 
in studying the relative importance of extrinsic and intrinsic factors. 
The model for a cortical cell can be tested in a cortex-like layered 
structure with several guidance cues, or in a sparse in vitro environ-
ment like the one of Figure 9. This kind of approach is interesting, 
in that it provides the modeler with two sets of constraints on a 
single set of parameters in the growth cone module. The fact that 
similar simulations can be run with various parameters, or after 
having selectively de-activated specifi c functions is also of interest 
for the study of mutations. For instance, in a more elaborated model 
of cortical plate formation incorporating various signaling molecu-
les, it will be possible to suppress their activity totally or partially, 
to try to reproduce well-known phenotypes (Assadi et al., 2003; 
Herms et al., 2004), or maybe even to predict new ones.

Our goal was to provide a general purpose simulation fra-
mework for the simulation of the physical development of neuronal 
networks. We showed how two models from the literature could 
easily be implemented in CX3D. Indeed, we could rely on the phy-
sics engine for technicalities like neighbor detection or diffusion, 
and did not have to code them anew. An obvious advantage in using 
the same framework for several types of simulations is that they 
can easily be combined in a larger simulation. As an illustration, we 
added a cell cycle to the Delta-Notch model of Collier et al. (1996) 
(Video S5 in Supplementary Material).

FUTURE WORK
We have given several examples of how CX3D can be used to simu-
late growth of neurons in 3D space. Although we have the ability to 
generate synapses at contact points between neurons, these synapses 
are not functional, because our program does not yet incorporate 
electrophysiology. However, where the electrophysiology is reque-
sted, we provide the ability to export a description of a grown 
network as an XML document with the NeuroML level 3 specifi ca-
tion2 (Goddard et al., 2001). These documents can be used to con-
fi gure a simulation in a point neuron electrophysiology simulator 
such as PCSIM3 (Pecevski et al., 2009). Future versions of CX3D 
could include an electrophysiology module directly inside neurites. 
Alternatively, modules could implement an interface for online 
communication with a coexisting electrophysiology simulator. This 
feature would of course be of great interest, because of the direct 
infl uence of electrical activity on neurite outgrowth (Hutchins and 
Kalil, 2008), or on interneuron migration (de Lima et al., 2009); 
and in a later phase to study phenomena like synaptic competi-
tion (Turrigiano, 2008) and learning (Butz et al., 2009). A further 
limitation of the present version of CX3D is that it runs on a single 
processor, so limiting both the speed and the size of simulations. 
However, we are currently developing a parallel implementation.

APPENDIX
PROGRAM ARCHITECTURE
This section describes the general organization of the CX3D pla-
tform by introducing the principal classes of each package.

There are four abstract layers in the representation of a cell in 
CX3D (Figures 6A,B). One purely technical with which the user 
never interacts, one representing the physics of the simulation, 
on which the user has to call some methods, and two layers with 
which the user interacts by writing small modules describing 
the model’s specifi cations. Each layer correspond to a distinct 
java package:

(1) ini.cx3d.spatialOrganization: this layer defi nes the Delaunay 
triangulation and median dual graph needed to spatially 
organize the elements of the simulation, and decompose the 
extracellular volume. We use the package Dyna3D develo-
ped by Dennis Goehlsdorf4. Vertices are defi ned by the class 
SpaceNode, of which each discrete object or space volume 
has one instance.

2http://neuroml.org
3http://www.igi.tugraz.at/pcsim
4http://www.ini.uzh.ch/~dennis

http://neuroml.org
http://www.igi.tugraz.at/pcsim
http://www.ini.uzh.ch/~dennis
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(2) ini.cx3d.physics: the second layer represents the physical pro-
cesses, both of the extracellular matrix (extracellular diffusion) 
and of the neurons (mechanics and intracellular diffusion), 
for which we use instances of the PhysicalSpace class, and 
sub-classes of the abstract PhysicalObject, respectively. To 
have the latter derived from the class defi ning the extra-cellular 
matrix volumes ensures that any object in the simulation, as 
soon as it is instantiated, automatically comes with a minimal 
defi nition of the space it occupies. To embody the neurons in 
the simulation framework we discretize them into small sphe-
res (for the somata) and cylinders (for the neurite segments) 
with the classes PhysicalSphere and PhysicalCylinder. 
They contain the methods needed for the simulation of the 
mechanics and offer an interface for communication with the 
biological modules so that the physical shape of the neurons 
can be modifi ed by growth, branching, retraction etc.

(3) ini.cx3d.localBiology: the third layer specifi es the local 
 biological properties of the simulation, namely the behavior of 
the spheres and cylinders, with the classes SomaElement and 
NeuriteElement respectively (both subclasses of the abstract 
LocalBiologyObject). Instances of these are always asso-
ciated with a particular PhysicalObject. These instances 
contain modules written by the users to defi ne the specifi c 
rules governing the behavior of each discrete object in the 
model he wants to simulate. These modules are classes that 
implement the LocalBiologyModule interface.

(4) ini.cx3d.cell: the fourth and last layer defi nes the higher level 
biological processes, infl uencing the whole neuron. As for the 
local biology level, it is composed of modules that the user 
can write, implementing a special interface (CellModule). 
These modules are contained in the class Cell, of which 
there is only one instance per neuron.

Finally, the user should be familiar with the package ini.cx3d.
Simulation, which contains two important classes:

ECM contains a list of all the objects currently active in the simula-
tion (instances of the classes described above). This class is also used 
for adding supplementary vertices to the triangulation, to defi ne 
chemicals or chemical reactions, and to add boundary conditions.

Scheduler contains methods to execute the simulation. That 
means that it calls the run() method of each object. Consequently, 
the physical objects process diffusion, compute their mechanical 
interactions and move accordingly. The local biology objects and 
the cells run all their modules (and thus the models are execu-
ted). The triangulation, on the other hand, is not run by the 
scheduler but only updated in case of vertex displacement, remo-
val or insertion. The fi rst time that the scheduling methods are 
executed, a GUI window appears, and graphically displays the 
physical objects.

A COMMENTED EXAMPLE
The usage of CX3D is described in a tutorial available on the 
CX3D website5. We briefl y illustrate the programming interface 
by implementing a simplifi ed version of the model presented in 
Figure 11: The soma secretes the intracellular substance ‘tubulin’ 

which  diffuses along the neurite branches. The neurite distal 
segments (the growth cones) consume tubulin to move at a 
speed proportional to its concentration, and bifurcate with a 
constant probability.

To encode this simulation, we write three short java classes: 
two modules (a java class implementing the nine methods of the 
LocalBiologyModule interface, or extending the abstract class 
AbstractLocalBiologyModule), and one additional class to 
initialize the simulation.

Recall that each module is located within a CellElement. 
Instances of this fi rst module will be located in a soma, where 
they secrete tubulin at a constant speed:

public class InternalSecretor extends 
 AbstractLocalBiologyModule {
    // secretion rate (quantity/time):
    private double secretionRate = 100;  
    // (required by the super class):
    public AbstractLocalBiologyModule getCopy() {
        return new InternalSecretor();
    }
    // This method is executed at each time step:
    secretion of tubulin in the extracellular space with 
    the modifyIntracellularQuantity method of 
    PhysicalObject.
    public void run() {
        super.cellElement.getPhysical().
    modifyIntracellularQuantity("tubulin", secretionRate);
    }
}

The second module represents the growth cone. There is one 
instance of this class in each terminal neurite compartment. It 
performs a smooth random walk (the direction is slightly per-
turbed after each step), with a speed depending on the concen-
tration of tubulin, which is also consumed in proportion to the 
speed. In addition, the growth cones bifurcate occasionally, in 
which case copies of the module are inserted into the new dau-
ghter branches:

public static class GrowthCone extends 
 AbstractLocalBiologyModule{
    // some parameters 
    private static double speedFactor = 5000;
    private static double consumptionFactor = 100;
    private static double bifurcationProbability = 0.003;
    // direction at previous time step:
    private double[] previousDir;
    // the initial direction is parallel to the cylinder axis
    // therefore we override this method from the superclass:
    public void setCellElement(CellElement cellElement){
        super.cellElement = cellElement;
        this.previousDir = cellElement.getPhysical().
         getAxis();
    }
    // to ensure distribution in all terminal segments:
    public AbstractLocalBiologyModule getCopy() {return 
     new GrowthCone();}
    public boolean isCopiedWhenNeuriteBranches() {return 
     true;}
    public boolean isDeletedAfterNeuriteHasBifurcated() 
     {return true;}5http://www.ini.uzh.ch/projects/cx3d/

http://www.ini.uzh.ch/projects/cx3d/
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    // growth cone model
    public void run() {
        // getting the concentration and defining the speed
        PhysicalObject cyl = super.cellElement.
         getPhysical();
        double concentration = cyl.
         getIntracellularConcentration("tubulin");
        double speed = concentration*speedFactor;
        // movement and consumption
        double[] direction = Matrix.add(previousDir, 
         Matrix.randomNoise(0.1,3));
        previousDir = Matrix.normalize(direction);
        cyl.movePointMass(speed, direction);
        cyl.modifyIntracellularQuantity("tubulin", 
         -concentration*consumptionFactor);
        // test for bifurcation
        if(ECM.getRandomDouble()<bifurcationProbability)
            ((NeuriteElement)(super.cellElement)).
              bifurcate();
    }
}

Now we can set up and run the simulation, i.e. write a class 
to (1) defi ne the substance ‘tubulin’; (2) create a cell (quadruple 
Cell-SomaElement-PhysicalSphere-SpaceNode); (3) with 
an initial neurite segment; (4) place the local biology modules; 
and (5) start the scheduler:

public class ProductionConsuption{
    public static void main(String[] args) {
        // (1) properties of the intracellular substance
        double D = 1000;  // diffusion constant
        double d = 0.01; // degradation constant
        IntracellularSubstance tubulin = new 
         IntracellularSubstance("tubulin",D,d);
        tubulin.setVolumeDependant(false);
        //    registering the substance with the ECM class
        ECM.getInstance().
         addNewIntracellularSubstanceTemplate(tubulin);
        // (2) getting a cell (with the four abstract 
               layers) at position (0,0,0)

        Cell c = CellFactory.getCellInstance(new double[] 
                 {0,0,0});
        // (3) create a neurite (pointing along the z-axis)
        NeuriteElement ne = soma.extendNewNeurite(new 
         double[] {0,0,1});
        ne.getPhysical().setDiameter(1.0);
        // (4) insert production module in the cell’s soma
        SomaElement soma = c.getSomaElement();
        soma.addLocalBiologyModule(new InternalSecretor());
        //     insert growth cone module into the neurite 
               element
        ne.addLocalBiologyModule(new GrowthCone());
        // (5) run the simulation
        Scheduler.simulate();  
    }
}

This model is extremely simplistic, but it already exhibits intere-
sting properties: The elongation speed decreases with the number 
of terminal branches, but the bifurcation probability over time is 
constant, and so the distance between two branch points beco-
mes shorter. In addition the tortuosity also increases as the speed 
decreases.
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