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that the balanced state naturally and robustly occurs in large net-
works if the inhibitory and excitatory coupling strengths and their 
respective numbers of synapses appropriately scale with each other. 
Moreover, fl ipping the state of only one of the binary neurons in a 
large network (i.e. applying the smallest possible non-zero pertur-
bation in such a system) leads to a supra-exponential divergence 
between the perturbed and the unperturbed realizations of the 
network dynamics, exemplifying the extremely chaotic nature of 
the balanced activity (v.Vreeswijk and Sompolinsky, 1996, 1998).

Later analysis (Amit and Brunel, 1997; Brunel, 2000) of net-
works of integrate-and-fi re neurons demonstrated that the mean 
fi eld description of the balanced activity for these continuous-state 
neuron networks is very similar to that of the original binary neuron 
networks. These and related results (Amit and Brunel, 1997; Brunel, 
2000; Timme et al., 2002; Timme and Wolf, 2008) indicate that sta-
tistically the same balanced activity persists both in networks with 
external excitatory inputs and recurrent inhibition only as well as 
in networks with equal total amounts of recurrent inhibition and 
recurrent excitation. Given these fi ndings about the robustness of 
the balanced state, the original work (v.Vreeswijk and Sompolinsky, 
1996, 1998) together with common intuition may suggest that highly 
irregular activity originates from chaotic network dynamics. This 
hypothesis, however, has not been systematically investigated so far. 
Recent research even points towards the contrary: it shows that 
in globally coupled networks without delay the dynamics tends to 
converge to stable periodic orbits if inhibition dominates (Jin, 2002). 
Numerical investigations of weakly diluted inhibitorily coupled 
networks without delay show that although the dynamics may be 

INTRODUCTION
Most neurons in the brain communicate by emitting and receiving 
electrical pulses, called action potentials or spikes, via chemically 
operating synaptic connections. Local cortical circuits often exhibit 
spiking dynamics that is highly irregular and appears as if it were 
random. Such irregular activity at low neuronal fi ring rate is thus 
considered a basic “ground state”. It is characterized by individ-
ual neurons that display largely fl uctuating membrane potentials 
and highly variable inter-spike-intervals (ISIs) as well as by low 
 correlations between the neurons (v.Vreeswijk and Sompolinsky, 
1996, 1998; Brunel, 2000; Vogels and Abbott, 2005; Kumar et al., 
2007). Originally, this dynamical state seemed to be in contradic-
tion to cortical anatomy, where each neuron receives a huge number 
of synapses, typically 103–104 (Braitenberg and Schüz, 1998): One 
might expect that a large number of uncorrelated, or weakly corre-
lated synaptic inputs to one neuron, given the central limit theorem, 
sums up to a regular total input signal with only small relative fl uc-
tuations, therefore excluding the emergence of irregular dynamics. 
So the fi nding of highly irregular activity might be surprising.

This issue was resolved by the idea of a “balanced state” 
(v.Vreeswijk and Sompolinsky, 1996), in which excitatory (posi-
tive) and inhibitory (negative) input balances such that the average 
membrane potential is sub-threshold and strong fl uctuations once 
in a while are suffi ciently depolarizing to initiate a spike. The origi-
nal work “Chaos in neuronal networks with balanced excitatory and 
inhibitory activity” (v.Vreeswijk and Sompolinsky, 1996) was an 
analysis of a self-consistent, highly irregular “balanced” activity for 
sparse random networks of binary model neurons. It was shown 

How chaotic is the balanced state?

Sven Jahnke1,2*, Raoul-Martin Memmesheimer 3 and Marc Timme1,2

1 Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
2 Bernstein Center for Computational Neuroscience, Göttingen, Germany
3 Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA

Large sparse circuits of spiking neurons exhibit a balanced state of highly irregular activity under 
a wide range of conditions. It occurs likewise in sparsely connected random networks that 
receive excitatory external inputs and recurrent inhibition as well as in networks with mixed 
recurrent inhibition and excitation. Here we analytically investigate this irregular dynamics in 
fi nite networks keeping track of all individual spike times and the identities of individual neurons. 
For delayed, purely inhibitory interactions we show that the irregular dynamics is not chaotic but 
stable. Moreover, we demonstrate that after long transients the dynamics converges towards 
periodic orbits and that every generic periodic orbit of these dynamical systems is stable. 
We investigate the collective irregular dynamics upon increasing the time scale of synaptic 
responses and upon iteratively replacing inhibitory by excitatory interactions. Whereas for 
small and moderate time scales as well as for few excitatory interactions, the dynamics stays 
stable, there is a smooth transition to chaos if the synaptic response becomes suffi ciently slow 
(even in purely inhibitory networks) or the number of excitatory interactions becomes too large. 
These results indicate that chaotic and stable dynamics are equally capable of generating the 
irregular neuronal activity. More generally, chaos apparently is not essential for generating the 
high irregularity of balanced activity, and we suggest that a mechanism different from chaos 
and stochasticity signifi cantly contributes to irregular activity in cortical circuits.

Keywords: balanced state, irregular activity, local cortical circuits, synchronization, attractor neural networks, stability

Edited by:

David Hansel, 
University of Paris, France

Reviewed by:

Carl van Vreeswijk, CNRS, France
Stephen Coombes, 
University of Nottingham, UK

*Correspondence:

Sven Jahnke, Network Dynamics 
Group, Max Planck Institute for 
Dynamics and Self-Organization, 
Bunsenstrasse 10, 37073 Göttingen, 
Germany. 
e-mail: sjahnke@nld.ds.mpg.de



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 13 | 2

Jahnke et al. How chaotic is the balanced state?

irregular, its Lyapunov exponent is negative (Zillmer et al., 2006). 
These numerical simulations also demonstrate by example that the 
dynamics converges to a periodic orbit after long quasi-stationary 
transients. Interestingly, a related article (Zillmer et al., 2009) also 
gives numerical evidence that there can be chaos and long transients 
even in networks with only inhibitory connections.

In this article we show analytically in the limit of fast synaptic 
response, that in inhibitory networks with inhomogeneous delay 
distribution and arbitrary, strongly connected topology (A network 
is strongly connected if there is a directed path of connections between 
any ordered pair of neurons.) any generic trajectory is asymptotically 
stable. After a (typically long) stable transient characterized by irreg-
ular activity the dynamics converges to a periodic orbit that is also 
stable, in agreement with the results presented by Memmesheimer 
and Timme (2006a) and Timme and Wolf (2008). In particular 
the transients are not chaotic in contrast to the ones occurring in 
purely excitatorily coupled networks (Zumdieck et al., 2004). We 
show that this collective dynamics is robust upon increasing the 
synaptic response time from zero and upon replacing some inhibi-
tory by excitatory interactions. Nevertheless, if the synaptic response 
becomes too slow or the number of excitatory interaction too large, 
the collective dynamics becomes chaotic via a transition where the 
Lyapunov exponent changes smoothly and the spiking activity stays 
highly irregular. Thus the irregularity equally prevails in networks 
with stable as well as in networks with chaotic dynamics (Figure 1), 
leaving no evidence that chaos generates the irregularity.

Some analytically accessible aspects of the stable irregular 
dynamics have been briefl y reported before (Jahnke et al., 2008a). 
Parts of this work have been presented by Memmesheimer (2007) 
and at a Bernstein Symposium (Jahnke et al., 2008b).

NETWORK MODEL
We consider networks of N neurons with directed couplings 
that interact by sending and receiving spikes. If such a directed 

 connection exists from neuron j to neuron i, we call i postsynaptic 
to neuron j. We denote the set of all postsynaptic neurons of neuron 
j by Post(j). Neuron j is then presynaptic to neuron i, the set of all 
presynaptic neurons is denoted by Pre(i). The membrane potential 
V

i
(t) of some neuron i evolves according to:

d

dt
V f V t ti i i

j

N

k
ij jk ij= ( ) + − −

= ∈

⎛
⎝⎜

⎞
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ε δ τs ,  (1)

where a smooth function f
i
 specifi es the internal dynamics, ε

ij
 are 

the coupling strengths from presynaptic neurons j to i, δ(.) is the 
Dirac delta-distribution, τ

ij
 > 0 are the delay times of the connection 

and t jk
s  denotes the time when neuron j sends the kth spikes. If not 

stated otherwise, in the following we consider inhibitory networks, 
i.e. ε

ij
 ≤ 0. Spikes sent to postsynaptic neurons with different delay 

times from neuron j are considered as separate spikes, so if the 
delays are all different, e.g. if they are chosen randomly, neuron 
j sends ⏐Post(j)⏐ spikes at time t jk

s . When neuron j reaches the 
threshold VΘ,j

 of the potential, i.e. V
j
(t−) = VΘ,j

, it generates spikes 
at t t jk=: s  for some k and is reset, V tj jk( ) .s = 0  The neuronal dynamics 
is therefore smooth except at times when events, namely sendings 
or receivings of spikes happen. Simultaneous sendings of spikes by 
one neuron are treated as one event as well as simultaneous recep-
tions of spikes sent by the same neuron. We require that the f

j
 satisfy 

f
j
(V

j
) > 0 and ′ <f Vj j( ) 0 for all j and V

j
 ≤ VΘ,j

, such that in isolation 
each neuron j exhibits oscillatory dynamics with a period Tj

free .
The network dynamics can equivalently be described by a phase-

like variable φ
j
(t) ∈ (−∞,φΘ,j

] satisfying

d

dt
jφ

= 1  (2)

at all non-event times (Mirollo and Strogatz, 1990). When the phase 
threshold is reached, φ φj jk jt( ) ,,

s − = Θ  the phase is reset, φj jkt( ) :s = 0  and 
a spike is generated. This spike travels to the postsynaptic  neurons, 
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FIGURE 1 | Highly irregular spiking activity equally emerges from chaotic 

and from stable circuit dynamics. Irregular dynamics in purely inhibitorily (A-C) 
and inhibitorily and excitatorily (D–F) coupled random networks of identical leaky 
integrate-and-fi re neurons (N = 400, γi ≡ 1, VΘ,i ≡ 1, τ ≡ij iT0 1. ,free  ⏐Pre(i )⏐ ≡ 80). 
(A,D) Spiking dynamics (A) ∑ ε ≡j ij −16,  Ii ≡ 4, NE = 0; (D) ∑ ε ≡j ij −11, Ii ≡

∼ 2.7, 
NE = 10000, where the NE excitatory couplings are distributed such that each 

neuron has the same number of excitatory inputs. The upper panel displays the 
spiking times (blue lines) of the fi rst 40 neurons. The lower panel displays the 
membrane potential trajectory of neuron i = 1 (spikes of height ΔV = 1 added at 
fi ring times). (B,E) Histogram of mean fi ring rates νi. (C,F) Histogram of the 
coeffi cients of variation CVi := σi /µi; μi ki k

s
i k
st t= 〈 −+, , ;1 〉  σ μi ki k

s
i k
s

it t2
1

2: ( ), ,= 〈 − − 〉+  
averaged over time.
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arrives after a delay time τ
ij
 at neuron i and induces a phase change 

according to

φ τ φ τεi jk ij
i

i jk ijt H t
ij
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with the transfer function

H U Ui
i iε φ := φ + ε( )( ) ( ) ,− [ ]1  (4)

where each U
i
(t) is the free (all ε

ij
 = 0) solution of (1) through 

the initial condition U
i
(0) = 0, yielding U

i
' > 0 and U

i
" < 0 and 

φΘ Θ, ,( ),j j jU V= −1  (cf. Memmesheimer and Timme, 2006a). Figure 2 
illustrates the relation between phase dynamics and membrane 
potential.

The analysis below is valid for general U
i
(φ); in the numeri-

cal simulations we employ leaky integrate-and-fi re neurons, 
f
i
(V) := I

i
 − γ

i
V with time scale γ > 0i

−1  and equilibrium potential 
γ Θi i iI V− >1

, , the membrane potential has the functional dependence 
U Ii ii i( ) ( exp( ))φ γ γ φ= − −−1 1  on φ and the oscillation period of a 
free neuron is given by T I I Vi i i i i i

free := γ /( − γ ))Θ
−1 ln( .,  We consider 

arbitrary generic spike sequences in which all neurons are active, 
i.e. there is a fi nite constant T > 0, such that in every time interval 
[t, t + T), t ∈ R, every neuron fi res at least once. Further, we assume 
that the dynamics is suffi ciently irregular such that two events occur 
at the same time with zero probability.

Due to the delay, the state space is formally infi nite dimensional. 
However, it becomes fi nite dimensional after some fi nite time t′ 
(cf. Ashwin and Timme, 2005). At a given time t > t′ the network 
dynamics is completely determined by the phases φ

i
(t) and by the 

spikes which have been sent but not yet received by the postsynaptic 
neurons at t. Their number is bounded by some constant ND′. Due 
to the inhibitory character of the network couplings, each neuron 

i needs at least the free oscillation period φ =Θ,i iT free to generate a 
spike after the last reset. Consequently, at most

′
⎛

⎝⎜
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φ∈{ }

Θ

max
, , ,

,
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 (5)

spikes per neuron are in transit and the state space stays fi nite, 
with dimensionality smaller than or equal to N·(1 + D′) (cf. also 
Ashwin and Timme, 2005). Here ⎡x⎤ denotes the ceiling function, 
the smallest integer larger or equal to x.

We now introduce variables to describe spikes, which are already 
sent at time t by neuron j to the postsynaptic neuron i and not 
yet received. A single spike in transit is characterized by the state 
variable σ

ijk
(t) ∈ [0, τ

ij
]. The index k = 1, 2, 3…≤ D′/N numbers the 

different spikes traveling from neuron j to i at time t in the order 
of arrival at the postsynaptic neuron i, starting with k = 1 for the 
next spike to arrive. When spikes are emitted at time t jn

s  for some 
n, σ

ijk
(t) is set to σ ( ) =ijk jnt s 0. The spike index k equals the number 

of spikes already in transit plus one. It thus depends on the actual 
network state at time t jn

s . Between two events σ
ijk

(t) increases linearly 
with slope one, when σ ( + τ ) = τijk jn ij ijt s  the spike is received by the 
postsynaptic neuron i, where it induces a phase jump according to 
Eq. 3. After spike reception we cancel the spike arrived (which has 
index k = 1) and renumber the indices k > 1 as k → k − 1 such that 
σ ( + τ )ij jn ijt1

s  specifi es the spike sent by neuron j which arrives next 
at the postsynaptic neuron i (cf. Figures 3A,B for illustration).

RESULTS
LYAPUNOV STABILITY OF ARBITRARY GENERIC SPIKE SEQUENCES
In this section we study the stability properties of the spike 
sequences. We compare the microscopic dynamics of two sequences, 
that slightly differ in the timing of the spikes, but have the same 
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FIGURE 2 | Relation between membrane potential and phase dynamics. 

(A) Membrane potential of neuron 1. At t t k= 1
s  the membrane potential V1(t) 

crosses the threshold potential VΘ,1 which leads to a reset of the potential to 
V t k1 1 0( ) ,s =  and spikes are emitted. (B) Membrane potential of neuron 2 which 
is postsynaptic to neuron 1, i.e. 2 ∈ Post(1). In this example the coupling is 

excitatory. The spike is received at t k1 21
s +τ  and induces a jump of size ε21 in the 

potential. (C) Phase dynamics of neuron 1. The phase increases linearly until 
the phase threshold φΘ,1 is reached, then it is set to zero. (D) Phase dynamics 
of neuron 2. When the spike is received at t t k= 1 21

s + τ  it induces a phase jump: 
φ τ φ τ φ τ εε2 1 21

2
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1
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 ordering. We show that the distance between these trajectories is 
bounded by the initial distance. Assuming that one sequence is 
generated by a perturbation of the other, this implies Lyapunov 
stability for the considered spike pattern. Distances and perturba-
tion sizes are measured using the maximum norm.

Since the distance between trajectories only changes at event 
times, we can choose an event-based perspective. The time of the 
nth event in the entire network is denoted by t

n
 in the fi rst sequence, 

and by �tn  in the second one. Analogously, we denote the phases of a 
neuron i at a given time t by φ

i
(t) and �φ ( )i t  and the spikes in transit 

at time t by σ
ijk

(t) and ijk t�σ ( ) in the different sequences. Let

Δ := φ − φ δ − δi
n

i n i n n n i
n nt t t t t( ) ( ) ( )( ) ( )( ) − −( ) =� � �  (6)

denote the difference between the phase difference, δ := φ −i
n

i nt( ) ( )

i t� �φ ( ),n  and the temporal offset, δ := −t t tn
n n

( ) ,�  after the nth and 
before the (n + 1)th event (cf. Figure 3C). Similarly

ijk
n

ijk n ijk n n n ijk
n nt t t t t( ) ( ) ( ): :Δσ σ σ δσ δ= − ( )( ) − −( ) = −( ) � � �  (7)

labels the shift of the kth spike sent by neuron j and not yet arrived 
at neuron i after the nth and before the (n + 1)th event. Between 
two consecutive events, both φ φi it t( ), ( )�  and σ σijk ijkt t( ), ( )�  increase 
linearly and only at event times the phases and spike variables are 
updated nonlinearly as described above. Therefore, to study the 
stability of the system it is suffi cient to consider the phase shifts 
after events.

In the following we investigate the evolution of shifts at the 
discrete event times. There are two different kinds of events: (i) 
sending and (ii) receiving of spikes. In the fi rst case, the shifts Δi

n( ) 
and Δσijk

n( ) stay unchanged, but new spikes with new spike variables 
are generated. These variables inherit the perturbation of the send-
ing neuron. In the second case, the phase shift of the neuron which 
receives the spike changes and the spikes in transit are reordered. 
The resulting phase shift of the neuron receiving a spike turns out 

to be a weighted sum of previous shifts. This can be shown by 
studying both cases in detail.

Transfer of perturbations without change of size
If as (n + 1)th event the phase of some neuron j∗ reaches its thresh-
old and a spike is emitted, the shifts of all neurons’ phases stay 
unchanged,

Δ φ + Δj
n

i n n n i n n n
n

jt t t t t t t( ) ( )+ ( ) +( ) +
+= − − ( ) + −( )( ) − =1

1 1
1� � � �φ δ (( ).n
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Similarly, the shifts of the spikes in transit stay unchanged
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Additionally, new spikes are generated σ
ij∗k∗(t

n + 1
) = 0 and 

ij k nt∗ ∗σ� �( )+ =1 0 where k∗ = k∗(i, j∗, n + 1) is the appropriate spike 
number, cf. Figure 3. The shifts of the new spike variables depend 
on the phase shift of the sending neuron j∗ according to

ij k
n n

n j j n n j j

t

t t t
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Averaging of prior perturbations
If as (n + 1)th event some spike arrives, say σ

i∗j∗1
 (t

n + 1
) = τ

i∗j∗, it 
induces a phase jump in the postsynaptic neuron i∗. According to 
Eq. 3, the phase shift Δ ∗i

n( )+1  can be computed as:

Δ φ φ∗ ε
∗

∗ ε
∗

∗∗ ∗ ∗ ∗i
n i

i n
i

i nH t H
i j i j

( ) ( ) ( ) (+
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1 1
� −− +( ) −�t t n) ,( )δ 1
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where φ φ∗ ∗i n i n n nt t t t( ) ( ) ( )+
−

+= + −1 1  and � � � � � �φ φ∗ ∗i n i n n nt t t t( ) ( ) ( )+
−

+= + −1 1  
are the phases “just before” spike reception. Using the defi nitions 
(6) we fi nd the identity

  τij
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FIGURE 3 | Phase dynamics of neuron j and defi nition of state variables. 

(A) At t = tn and t = tn + 1 the phase φj(t) reaches the threshold and is reset to 0. 
(B) The spikes emitted travel to the postsynaptic neurons i ∈ Post(j ). They 
are described by σijk(t). In this example we show two spikes traveling 
from neuron j to one specifi c postsynaptic neuron i, described by σij1(t) 
(black) and σij2(t) (red). At t = tn, σij1(tn) is set to 0; here k = 1 because there 
is no spike in transit at t tn= −. When neuron j spikes again at t = tn + 1, 
σij2(tn + 1) is set to 0. At t = tn + τij the spike emitted at t = tn arrives at 
the postsynaptic neuron i and induces a phase jump in φi(t) (not shown, 

cf. Figure 2). After spike reception, we renumber k → k − 1 such 
that σij2 → σij1. (C) Defi nition of the phase shifts. The phase curve φi(t) of 
neuron i (blue) before and after the reception of a spike at t = tn is shown 
together with �φi t( ) (black). δ φ φi

n
i n i nt t( ) ( ) ( )= − � �  is the difference of neuron i’s 

phases in the unperturbed and the perturbed dynamics taken at 
corresponding event times tn and �tn . δ =t t tn

n n
( ) − �  denotes the difference 

of event times tn and �tn , i.e. the temporal offset between both sequences. 
Finally, Δ δ δi

n
i
n nt( ) ( ) ( )= −  is some phase shift of neuron i with the temporal 

offset taken into account.
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φ φ Δ δ∗ ∗ ∗i n i n i
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Applying the mean value theorem in Eq. 11 and the relation
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such that the phase shift stays unchanged, Δ Δi
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∗ φ φ( ) ( )( )/+ = =1
0 1 independent of φ.

For ε
i∗j∗ < 0, ci j

n
∗ ∗

( )+1  is bounded by

c
H

c
H

k

k

i j
n

k
min

,

( )

( )

,
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supmin=
∂( )

∂
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⎪
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⎫
⎬
⎪
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∂
+
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φ

φ

φ
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∗
1 εε
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k

c
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⎨
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⎫
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⎪

⎭⎪
=

 (16)

where ε : {ε }
εmax

, :
max=

≠i j
ij

ij 0
 and ε = ε

ε ≠min
, :

: min { }.
i j

ij
ij 0

 We have used that 

∂ φ ∂φε( ( ))/( )H k  is monotonic increasing with ε
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The shifts of traveling spikes stay unchanged on spike recep-
tion, cf. Eq. 9,

Δσ = Δσijk
n

ijk
n( ) ( )+1  (19)

for all spikes with i ≠ i∗ ∨ j ≠ j∗. For i = i∗, j = j∗ the spike variables 
are renumbered and

Δσ Δσi j k
n

i j k
n

∗ ∗ ∗ ∗−
+ =1

1( ) ( )

 
(20)

holds, except for k = 1, because σ
i∗j∗1

 (t) is the variable describing 
the spike received and therefore canceled.

We will now ascertain that the coeffi cients ci j
n
∗ ∗

( )+1  in Eq. 14 lie in 
a compact interval within (0, 1), such that a true averaging takes 
places when interactions happen. Formally, the phases of neurons can 
achieve values φ

i
 ∈ (−∞, φΘ,i

]. Each neuron fi res at least once within a 
time interval of length T, therefore the phases are certainly bounded 
to the compact interval φ

i
 ∈ [−T + φΘ,i

, φΘ,i
]. Further, in inhibitory 

networks the phase after an interaction is smaller than before,

H U U U Ui i i iε φ φ ε < φ = φ,( )( ) ( ) ( )i = +( ) ( )− −1 1  (21)

because together with U
i
 also Ui

−1 is strictly monotonic increasing 
and ε < 0. The strict concavity of U

i
(φ) implies

0 < ∂ φ φ
φ

<ε
( )

ε

H U

U H
i

i
i

i ( ) ( )

( )( )∂
= ′

′( )φ
1 (22)

for any fi nite φ (cf. Figure 4 for illustration). The derivative ∂
∂φ
εH i( ) ( )φ  

is continuous in φ, therefore the image of [−T + φΘ,i
,φΘ,i

] under the 

map 
∂ φ

∂φ
εH
ij
i( ) ( )

 is compact. Together with Eq. 22 it follows that

0 < c
min

, c
max

 < 1. (23)

Taken together, Eqs. 8–10, 14 and 23 imply that a true averag-
ing between shifts already present in the system takes place when 
a spike is received. For other events the shifts stay unchanged. As a 
consequence, the maximal and minimal shift after the nth event,

Δ : Δ , Δσ Δ := Δmax
( )

, ,

( ) ( )
min
( )

, ,
max minn

i j k
i
n

ijk
n n

i j k
= ⎧

⎨
⎩

⎫
⎬
⎭

and ii
n

ijk
n( ) ( ), Δσ ,⎧

⎨
⎩

⎫
⎬
⎭  (24)

are bounded by the initial shifts for all future events,

Δ ≤ Δ Δ ≥ Δ ,max
( )

max
( )

min
( )

min
( )n n0 0and  (25)

as long as the order of events in both sequences is the same. Here 
the minima and maxima are taken over i,j ∈ {1,…,N} and k num-
bers the spikes traveling from neuron j to i at time t

n
. An initial 

perturbation cannot grow, thus the trajectory is Lyapunov stable. 
We note that we did not make any assumptions about the network 
connectivity, the results hold for any network structure and the 
described class of trajectories.

ASYMPTOTIC STABILITY
In this section we prove that for strongly connected networks even 
asymptotic stability holds under the condition that the perturbed 
and the unperturbed sequences have the same order of events, i.e. 
the order of events is unchanged by small perturbations. The cen-
tral idea is as follows: We study the dynamics and convergence of 
two neighboring trajectories. We will track the propagation of the 
perturbation of one specifi c neuron l

0
 through the entire network. 

Since there is a directed connection between every pair of neurons 
in the network and any spike reception leads to an averaging of 
shifts, there is an averaging over all perturbations in the network. 
For large times all perturbations converge towards the same value, 
such that both sequences become equivalent, only shifted by a 

−1
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  )
ε

phase φ

φ
U

’( 
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A

FIGURE 4 | (A) The transfer function H i
ε φ( )( ) for a leaky integrate-and-fi re 

neuron. For ε = 0 (black), H i
0 φ φ( )( ) =  is the identity (black), for ε < 0 (blue: 

ε = −0.5, green: ε = −1) the phase φ after receiving an input is smaller than 
before. For all inhibitory inputs we fi nd H i

ε φ φ( )( ) < . (B) The derivative of Ui(φ) is 
monotonic decreasing, therefore ∂ φ ∂φεH i( )( ) / ≤ 1 for ε ≤ 0 (cf. Eq. 22).
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 constant temporal offset. Further details and the derivation of the 
following Eqs. 26–28 is provided in the Appendix.

We fi nd the upper bound

Δ ≤ ∗⋅Δ [ ∗]⋅ Δmax
( ) ( )

max
( )K

lc c
0

0 01+ −  (26)

for the maximal perturbation after K := 2NM events and analo-
gously the lower bound

Δ ≥ ∗ Δ + [ ∗]⋅ Δmin
( ) ( )

min
( )K

lc c⋅ −
0

0 01  (27)

for the minimal perturbation. The averaging factor c∗ is determined 
by the network parameters and bounded to

3

4
1 1≤ ∗< .− c  (28)

A bound for the difference of the maximal and minimal per-
turbation after K events is therefore given by

Δ − Δ ≤ − ∗ Δ − Δmax
( )

min
( )

max
( )

min
( )( ) .K K c1 0 0⎛

⎝⎜
⎞
⎠⎟  (29)

The spread of any perturbation through the network has a con-
tracting effect on the total perturbation, it leads to a decay of the 
difference between the extremal perturbations at least by a factor 
(1 − c∗). Inequality (29) implies together with the bound (28) that 
for the considered trajectories in the long-time limit the maximal 
and minimal perturbation are the same,

lim limmax
( )

min
( )

n

n

n

n

→∞ →∞
Δ = Δ .

 
(30)

Thus, for t → ∞ the events are just shifted by a constant tem-
poral offset

δ δ = − Δ
→∞ →∞

t t
n

n

n

n: lim lim( )
max
( )=

 
(31)

(cf. Figure 5 for illustration), and both sequences become equiva-
lent lim .( )

n i
n

→∞ =δ 0  Thus all sequences considered are asymptoti-
cally stable for all strongly connected networks and perturbations 
decay exponentially fast with at least

Δ Δ Δ Δmax
( )

min
( )

max
( )

min
( )( ) ,n n

n

− ≤ − −⎢⎣ ⎥⎦ ⎛
⎝⎜

⎞
⎠⎟1 0 0c K∗

 
(32)

where ⎣·⎦ is the fl oor function. The actual and numerically  measured 
exponential decay is much faster than the estimation given by Eq. 
32, because for deriving Eqs. 26 and 27 in the Appendix we assumed 
a worst-case scenario. The main reasons for the faster decay are 
that (i) the mean path length is more meaningful for estimating 
the number of events until all neurons have received an input from 
the starting one and (ii) it is impossible that the neurons receive 
the worst-case perturbation at each reception.

MARGINS
The stability results in the previous sections hold for the class of 
patterns, where a small perturbation does not change the order of 
spikes. In this section we show that typical spike patterns, generated 
by networks with a complex connectivity, belong to this class.

In heterogeneous networks with purely inhibitory interactions 
the occurrence of events at identical times has a zero probability. 
There is no mechanism causing simultaneous spiking, like supra-
threshold inputs in excitatorily coupled networks. As long as two 
events do not occur at the same event time, there is a non-zero 
perturbation size keeping the order unchanged in any fi nite time 
interval. However, the requirement of an unchanged event order 
yields more and more conditions over time such that the allowed 
size of a perturbation could decay more quickly with time than the 
actual perturbation. This is excluded if a temporal margin µ(n) (cf. Jin, 
2002) stays larger than the dynamical perturbation for infi nite time. 
Formally, after time t

n
 denote the kth potential future event time (of 

the original trajectory) that would arise if there were no future inter-
actions by θ

n,k
, k ∈ N, and the temporal margin by µ(n) := θ

n,2
 − θ

n,1
. 

A suffi ciently small perturbation, satisfying Δ Δ < μ ,max
( )

min
( ) ( )n n n−  

cannot change the order of the (n + 1)th event.

Stability of generic periodic orbits
This directly implies that almost all periodic orbits (all those with 
non-degenerate event times t

n
) consisting of a fi nite number of P 

events are stable because there is a minimal margin

κ( )

,

( )minP

n P

n:= μ
∈{ , }1 …  

(33)

for every non-degenerate periodic pattern (c.f. also Memmesheimer 
and Timme, 2009 under revision).
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FIGURE 5 | Stable dynamics in the network of Figures 1A–C. (A) Exponential decay of the maximal perturbation max ( )
i i

nδ  (blue dots) and minimal margin κ(n) (gray 
line) for one microscopic dynamics. The initial perturbation max ( )δ ≈i

0 510−  decays exponentially fast. (B) Exponential convergence of the temporal offset δt(n). For 
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Stability of irregular non-periodic spiking activity
We study the stability properties of irregular non-periodic spike 
sequences by considering the minimal margin κ(n) over the fi rst n 
events. For simplicity, we consider delay distributions where τ

ij
 is 

independent of the spike receiving neuron i. The irregular spiking 
dynamics of the entire network is well modeled by a Poisson point 
process with rate νs, where νs specifi es the mean fi ring rate of the 
network (Tuckwell, 1988; Brunel and Hakim, 1999; Brunel, 2000; 
Burkitt, 2006). We assume that, along with the irregular dynamics, 
the temporal margins are also generated by a Poisson point proc-
ess with the network event rate ν = 2νs, because any spike sending 
time generates one receiving event due to the independence of τ

ij
 

from i and the defi nition of events. The distribution function of 
margins is given by

P (µ(n) ≤ µ) = 1 − e−νµ. (34)

Therefore, the probability that the minimal margin κ(n) after n 
events is smaller or equal to µ is determined by the probabilities 
that not all individual margins µ(n) are larger than µ such that

P P en

m

n
m nκ ≤ μ = − μ μ

=

− νμ( ) ( )( ) >( ) = −∏1 1
1  

(35)

with density ρ
n
(µ) := dP(κ(n) ≤ µ)/dµ = nνexp(−nνµ). This implies 

an algebraic decay with the number n of events for the expected 
minimal margin

κ = μρ (μ) μ (ν )
∞

( )n
n d n

0

1∫ = −

 
(36)

that depends only on the event rate and is independent of the 
specifi c network parameters. Numerical simulations show excel-
lent agreement with this algebraic decay (36); a typical example is 
shown in Figure 6.

This already strongly suggests that a suffi ciently small perturba-
tion stays smaller than the minimal margin for all times. However, 
in each step, the exponential distribution of margins has a fi nite 
density for arbitrary small values of µ, i.e. in each step the margin 
can fall below the level of perturbation with positive probability. 
We will show that P n n n n(∃ ∈ : μ ≤ Δ Δ ,� ( )

max
( )

min
( ) )−  the probability 

that there is at least one step in which the margin falls below the 
perturbation size, goes to zero if the size of the initial perturbation 

goes to zero. Thus, also the probability that there is a change in the 
order of events goes to zero. Of course, we cannot expect to reach 
zero for nonzero perturbation.

We derive a lower bound for the probability that the margin stays 
larger than Δ − Δmax

( )
min
( )n n  for infi nite time. We show that it converges 

to one when the size of the perturbation goes to zero and thus 
prove that suffi ciently small perturbations have arbitrarily high 
probability to stay smaller than the minimal margin for all times. 
We start from the upper bound for the evolution of the perturba-
tion, Eq. 32. Using n

K
n
K⎢⎣ ⎥⎦ ≥ −1  and Eq. 28 leads to

Δ − Δ ≤ ∗ Δ Δ

=

max
( )

min
( )

max
( )

min
( )( )

exp
log(

n n c

c

n
K1

1

1 0 0− −

−

− ⎛
⎝⎜

⎞
⎠⎟

∗∗ Δ Δ
∗  = −α ,)

exp( )max
( )

min
( )

K
n

c
C n

⎛
⎝⎜

⎞
⎠⎟

−
−

0 0

1
 (37)

where we introduced

C
c

:= Δ − Δ
∗ ,max

( )
min
( )0 0

1−  
(38)

α := −
∗

> .log( )1
0

− c

K  
(39)

In particular, C → 0 if the initial perturbation goes to zero, i.e. 
Δ − Δ → ,max

( )
min
( )0 0 0  while α is independent of the initial perturbation. 

The probability that all margins are larger than all perturbations 
is given by

P n Pn n n

n

n n n∀ μ > Δ − Δ μ > Δ Δ: ( )
max
( )

min
( ) ( )

max
( )

min
( )⎛

⎝⎜
⎞
⎠⎟

=

∞
⎛= −∏

1
⎝⎝⎜

⎞
⎠⎟ ,

 
(40)

since the margins are independent. Using Eq. 37 and 
P(µ(n) > µ) = exp(−νµ) yields

n

n n n

n

n

n

P P C n
=

∞
⎛
⎝⎜

⎞
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=

∞

=

∏ ∏− −( )

=

1 1

μ > Δ Δ ≥ μ > α( )
max
( )
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( ) ( ) exp( )

11 1

1

∞

=

∞

∏ ∑− − − −
⎛
⎝⎜

⎞
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−

exp( exp( )) exp exp )

exp
exp

ν α = ν ( α

= ν
(

C n C n

C

n

αα)
,

−
⎛
⎝⎜

⎞
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(41)
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FIGURE 6 | Margins in the network given in Figures 1A–C. (A,B) Probability 
distribution P (κ(n) ≤ µ) after (A) n = 1 and (B) n = 105 events. The blue curve 
shows the distribution measured over 2500 samples, the red dotted line is the 
analytical prediction (no free fi t parameter, rate ν is measured; cf. Eq. 35). (C) 

Algebraic decay of the average minimal margin, κ( )n  (green dashed line, averaged 
over 250 random initial conditions) and its analytical prediction (no free fi t 
parameter; black solid line). Additionally we show the minimal margin κ(n) for 
three exemplary initial conditions (gray lines), including that of Figure 5A.
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which goes to one if the initial perturbation (and thus C) goes 
to zero.

We note that the assumption of a constant lower bound of the 
minimal margin is not necessary in contrast to Jin (2002). Indeed 
this assumption would be highly problematic, because in an irregu-
lar dynamics arbitrarily small margins naturally occur with positive 
probability in every step. So, assuming some lower bound would 
exclude generic irregular dynamics. In contrast, the novel approach 
introduced above enabled us to show that the generic irregular 
dynamics is stable.

For infi nitely large networks in a mean fi eld approach, where 
one takes the limit of infi nitely many neurons in the beginning 
(e.g. v.Vreeswijk and Sompolinsky, 1996, 1998; Brunel and Hakim, 
1999), our method is not applicable in a straightforward way. In 
this limit the average inter-spike interval goes to zero and a positive 
margin cannot be presumed. In our analysis we employ the fact that 
the minimal margin stays fi nite, i.e. a suffi ciently small perturbation 
does not change the order of events. This assumption and therefore 
our results hold for arbitrarily large fi nite systems.

CONVERGENCE TO PERIODIC ORBITS
Interestingly, the asymptotic stability together with the fi nite phase 
space imply that generic spike sequences converge to a periodic orbit. 
To show convergence analytically, we extend and explicate the ideas 
presented by Jin (2002) and Jahnke et al. (2008a). In the following 
we focus on a fi nite subsequence s∗ of a spike sequence generated by 
a given network. The number E∗ of events in s∗ is called the length 
E∗ of s∗. As discussed towards the end of Section “Network Model”, 
the considered system is fi nite dimensional with dimension bounded 
from above by N + ND′. Thus, if s∗ is suffi ciently long it contains at 
least two disjoint subsequences s

1
 and s

2
 of length E, where the order-

ing of events is identical. The maximal E for which the existence of s
1
 

and s
2
 is guaranteed, is given by the largest integer E satisfying

E∗ ≥ (N + ND′)E + E. (42)

When increasing the observation length E∗ also the possible 
length E of the subsequences increases. Both the phases and the 
variables encoding the spikes in transit are bounded to a fi nite 
 interval, φ

i
(t) ∈ [−T + φΘ,i

,φΘ,i
] and σ

ijk
(t) ∈ [0, max

ij
{τ

ij
}] at any 

given time t. Therefore, the maximal event-based distance between 
two trajectories is also bounded to a fi nite size,

Φ := τ .max
,

max ,
i j

ijT⎧⎨
⎩

⎫
⎬
⎭  

(43)

Thus, comparing sequences s
1
 and s

2
 the initial event-based dis-

tance between their underlying trajectories at the beginning of s
1
 

and at the beginning of s
2
 is bounded by Φ

max
, i.e. Δ Δ ≤ Φmax

( )
min
( )

max .0 0−  
By defi nition, the order of events in both sequences s

1
 and s

2
 is the 

same; therefore the distance between them shrinks according to Eq. 
32. After E events the distance is bounded by (cf. Eq. 37)

Δ Δ ≤ Φ = Φ
∗ α∗

max
( )

min
( )

max
max: exp( ),E E

c
E−

−
−

1  
(44)

where we used the defi nition (39). We note that, if we increase our 
observation length E∗ and therefore the subsequence length E, the 
maximal possible distance Φ∗

max  between the trajectories underlying 
the sequences s

1
 and s

2
 decreases. If Φ∗

max is suffi ciently small, i.e. the 

distance between s
1
 and s

2
 after E events is smaller than the average 

margin, there is a high probability that also the order of events in 
the sequence following s

1
 and s

2
 are the same. Analogous to Eq. 41 

the probability is given by:

PE c
∗ = −

− −
∗

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

exp
( )(exp( ) )

,maxν ∗ α
1

1 1
Φ

 

(45)

which goes to one when the observation length E∗ tends to 
infi nity.

This implies a periodic dynamics: Assume that s
1
 occurs fi rst in 

s∗ at the ath event and after a certain event number a + L ≤ E∗ − E 
the sequence s

2
 begins. We have seen that (with a certain probability) 

the ordering of events for (infi nite) sequences starting at the ath and 
the (a + L)th event is the same for all future times. Therefore also 
the sequence starting at the (a + 2L)th event is identical to the ones 
mentioned before, so the ordering of events is periodic. Together 
with the exponential convergence of equally ordered sequences 
this implies that also the spike timings converge towards a periodic 
orbit. For arbitrarily long observed sequences this happens with an 
arbitrary large probability that tends to one as E∗ → ∞.

In Figure 7 we show a typical example: The mean margin, 
κ( ),n  decays algebraically on the transient and saturates after 
the periodic orbit is reached. Interestingly, the periodic attractor 
(shown in Figure 7D) of the sparse random network resembles 
the “splay state” known from globally coupled networks (Strogatz 
and Mirollo, 1993). In a splay state the fi ring pattern is character-
ized by equally spaced ISIs. It has been shown that it is possible to 
design networks, which exhibit more complex periodic spike pat-
terns (Memmesheimer and Timme, 2006a,b). Indeed, in different 
parameter regimes we observe such complex periodic orbits, with a 
large periodicity, cf. the heterogeneous globally coupled network in 
Figure 8, where the periodic orbit is reached after a small number of 
events compared to sparse networks. As shown previously (Timme 
et al., 2002; Timme and Wolf, 2008), highly irregular spiking activity 
may coexist with even the simplest (fully synchronous) periodic 
orbits that exhibits regular, maximally ordered activity.

Although the attractor is reached after a fi nite number of events, 
the transient becomes very important in systems with strong inhi-
bition or large number of neurons. As formerly found in net-
works with excitatory coupling (Zumdieck et al., 2004), and also 
in weakly diluted networks with purely inhibitory interactions 
(Zillmer et al., 2006), the transient length grows rapidly with net-
work size such that the dynamics is governed by the transient for 
large time scales. We study inhibitory random networks with an 
arbitrary network structure, typically far away from the weakly 
diluted topology. To perform numerical measurements of the tran-
sient length in dependence on the network size N, we defi ne the 
length of the transient, t

r
 by the number of events after which the 

order of events stays periodic. When increasing the network size N, 
we leave the sum ˆ :I Ii j

N
ij= + =Σ ε1  of the external excitatiory current, 

I
i
, and the internal inhibition, ∑ εj

N
ij=1 , constant. Thus, on average 

each neuron receives a constant effective input independent of N 
and the mean fi ring rate of a single neuron 〈ν

i
〉 is approximately 

conserved. Figure 9 shows the increase of transient lengths with 
network size for different sizes of internal inhibition and differ-
ent scalings of the single connection strengths. We observe an 
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(N = 40, γi ≡  1, Ii ≡ 3.0, VΘ,i ≡ 1.0, τ ≡ /ij iT free 10, ⏐Pre(i)⏐ ≡ 8, ∑ ε ≡ −j ij 3.3) 
(A) Coupling matrix, each realized connection is indicated by a black square. 
(B) Average minimal margin κ( )n  (averaged over 250 random initial conditions, cf. 
Figure 6C) decays as a power-law (region A) and saturates after about 107 
events (region B) when the periodic orbit is reached. Inset: Margin µ(n) (black) 

and minimal margin κ(n) (gray) for a trajectory started from one specifi c initial 
condition. The margin µ(n) fl uctuates strongly on the transient and is 
comparatively large after the sequence becomes periodic; thus the minimal 
margin κ(n) does not decrease further for future events n. (C,D): Snapshots of 
irregular spike sequences (C) after n ≈ 15.000 events on the transient and 
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ij= .1 6 5  The fi nal spike pattern (shown after a transient of 9 × 106 events) repeats every 11012 
events and is highly irregular.

exponential increase of the mean transient length with network 
size N independent of the scaling of the coupling strengths, ε

ij
, 

and the number of incoming connections, K
i
 := ⏐Pre(i)⏐. This 

is qualitatively similar to the scaling of the transient lengths in 
weakly diluted networks (Zillmer et al., 2006). Assuming that the 
rapid increase continues for much larger networks, the transient 
will dominate the dynamics essentially forever in networks of bio-
logical relevant sizes. In this sense the transient becomes quasi-
stationary (cf. also Zillmer et al., 2006, 2009). If a larger network 
is in the balanced state (cf. Figure 1), the stable transients typically 
dominate the network dynamics.

ROBUSTNESS OF STABILITY AND SMOOTH TRANSITION TO CHAOS
In the following we will check the robustness of our results. The 
considerations above hold for networks with inhibitory interactions 
without temporal extent. We investigate the infl uence of excitatory 
interaction and pulses with a fi nite duration. For small deviation 
from the networks considered above the stability properties are simi-
lar, for large fractions of excitatory connections and larger temporal 
extent we observe a transition to a chaotic regime. For temporally 

extended couplings we assume that after a neuron is reset all previ-
ous input is lost. Therefore the state of a neuron is specifi ed by its 
last spike time and all spikes it has received afterwards. The phase 
representation is thus not meaningful anymore and we track two 
trajectories by comparing the differences in the last spiking times of 
the neurons and in the spike arrival times since these last spikings. 
To keep the section consistent, we adopt this view when studying 
the Lyapunov exponents of the excitatory dynamics.

Excitatory interactions
We have shown that in networks with purely inhibitory interactions 
the dynamics is typically stable. If the connection from neuron j 
to neuron i is excitatory, the phase shift Δi

n( )+1  of the postsynaptic 
neuron i after receiving a spike from neuron j as the (n + 1)th event 
may exceed its shift Δi

n( ) before and the shift Δσij
n
1

( ) of the received 
spike. Figures 10A,B gives an illustration: A spike is simultane-
ously received in the perturbed and in the unperturbed dynamics 
(i.e. Δσij

n
1 0( ) ).=  The phase shift before and after the application of 

the transfer function H i
ε φ( )( ) is shown for (A) an inhibitory input 

and (B) an excitatory input. For inhibitory input the phase shift 
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Δi
n( ) is reduced, this leads to the stable dynamics as described in the 

sections above. For excitatory input, the phase shift Δi
n( ) increases 

when the spike is received.
Indeed, since the inverse of U

i
(φ) is monotonically increasing 

with φ, we fi nd for a given ε > 0

H U U U Ui
i i iε φ φ + ε > φ φ( )( ) ( ( ) ) ( ( ))= = .− −1 1

 (46)

In contrast to Eq. 22, the derivative of the transfer function 
H i

ε φ( )( ) is bounded from below by

dH

d

U

U H

i
i

i
i

ε

ε

φ
φ

φ
φ

>
( )

( )

( ) ( )

( )
.= ′

′( ) 1  (47)

According to Eq. 14, this can lead to an increase of (in particular 
extremal) perturbations and to a destabilization of the trajectory. 
The upper bound of cij

n( ),  c
max

 < 1 (cf. Eq. 23) does not hold anymore. 
However, in a network with a small fraction of excitatory connec-
tions, the trajectory is still stable. At an interaction the perturba-
tion may increase, but the stabilizing effect of inhibitory inputs 
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FIGURE 9 | Scaling of the transient lengths in sparse random networks. 

(A) The sum of the external excitation and the internal inhibition is fi xed, 
ˆ ,I i := .=∑ ε + ≡j

N
ij iI1 1 0  such that the mean fi ring rate, 〈νi〉i, of the single neurons 

stays approximately constant. The number of incoming connections to each 
neuron, Ki := ⏐Pre(i)⏐, is fi xed to Ki ≡ 15 (green +), Ki ≡ 20 (black ×), Ki ≡ 25 
(red *). The single connections are set to εij ie K= 0 /  with e0 = −0.38. The 
solid lines show the best exponential fi t. We observe an exponential increase 
of the trial averaged transient length 〈tr〉 with network size N. The inset shows 
the dependence of the transient length on the in-degree for fi xed network size 
(N = 100). (B) Networks with fi xed fraction of connections, where Ki ≡ ⎣pN⎦ 
and p = 1/4. We scale the coupling strengths as ∑ ε =j

N
ij ie K=1 0 , such that 

ε ∝ /ij iK1 , and the external current Ii is adjusted appropriately to fi x the mean 
fi ring rate 〈νi〉i. The mean transient lengths for different e0 are shown together 
with the best exponential fi t (e0 = −0.34 (green +), e0 = −0.38 (black ×), 
e0 = −0.42 (red *)). Again, we observe an exponential increase of the transient 

lengths with N. The inset shows the increase of the transient length with 
inhibitory coupling strength for fi xed network size (N = 100). (C) Networks 
with fi xed fraction of connections, where Ki ≡ ⎣pN⎦ and p = 1/4. The external 
currents Ii ≡ 3.0 are fi xed and the internal coupling is normalized to 
∑ ε ≡j

N
ij= − .1 1 1 (green +), −1.5 (blue ×), −1.75 (black *), −1.9 (red ), such that the 

mean fi ring rate, 〈νi〉i, of the single neurons is approximately the same for each 
curve. The number of incoming connections per neuron, Ki, increases linearly 
with network size, so the coupling strengths are scaled as εij ∝ 1/Ki. Here we 
also observe an exponential increase of 〈tr〉 with network size. The inset shows 
the fast increase of the transient length with inhibitory coupling strength for 
fi xed network size and external current (N = 100, Ii ≡ 3.0). (D) The transient 
length is broadly distributed as shown in the histogram for 2500 trials started 
from random initial conditions, where the initial phases were randomly 
independently drawn from the uniform distribution on [0, 1] (N = 100, Ii ≡ 3.0, 
∑ ε ≡j

N
ij= − .1 1 5).
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FIGURE 10 | Destabilizing effect of excitation. (A) Simultaneous receiving of an 
inhibitory input decreases the phase shift. (B) Simultaneous receiving of an 
excitatory input increases the phase shift. (C) The largest Lyapunov exponent is 
measured for an increasing fraction of excitatory connections starting with the 
network of Figures 1A–C and ending with the network of Figures 1D–F. Here we 
keep the fi ring rate constant. Inset shows exemplarily the convergence of a fi nite 

time Lyapunov exponent with n. (D) Average fi ring rate 〈νi〉i versus number of 
excitatory connections in the network for different external currents Ii (black crosses, 
values belonging to the same Ii are connected by a dashed line). The neurons’ fi ring 
rate stays almost constant if we reduce the external current linearly with the 
number of excitatory connections (blue crosses). The inset displays the current 
strength employed to maintain fi ring rate of 〈νi〉i ≈ 0.23. (Further details see text).
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dominates the dynamics. We study the transition from the stable 
regime to chaotic dynamics (a discussion of the chaotic dynamics 
in networks with purely excitatory interactions can be found in 
Zumdieck et al., 2004). When increasing the number of excitatory 
couplings, we increase the mean effective input current to the neu-
rons. Thus we additionally decrease the external input I

i
 to keep the 

network rate ν constant. Indeed, in good approximation, the cur-
rent has to be decreased linearly with N

E
, the number of excitatory 

connections, I
i
 ≡ I − kN

E
 where I is the original input current.

To quantify the transition we estimate the largest Lyapunov 
exponent of the system: At the nth event, we denote n − W(n) 
the earliest event which still infl uences the future dynamics of the 
system explicitly. We apply an initial perturbation of size ||Δ

0
||

1
 to 

the event times t
0
, t−1

,…,t−W(0)
, where Δ

n
 = (Δt

n
, Δt

n − 1
,…,Δt

n − W(n)
) 

is the perturbation vector at the nth event time and Δt
i
 is the per-

turbation of t
i
. Here ||.||

1
 is the 1-norm, ||x||

1 
:= Σ

i
 |x

i
|. We evolve 

the system and rescale the perturbation vector Δ
n
 by a

n
 after each 

event, such that the rescaled perturbation vector is of the same size 
as the initial perturbation,

1 1 10′ = ⋅ =Δ Δn n naΔ .  (48)

The largest Lyapunov exponent, λ
max

, is then given by

λ λ λ
→∞max lim ( ) ( ) : ln( )= = .

=

−∑
n

i

n

in n
n

with
1

1

1a  (49)

We observe a transition from a stable to a chaotic regime, char-
acterized by a positive Lyapunov exponent. For small fraction of 
excitatory neurons the dynamics is typically stable, the effect of the 
inhibitory pulses dominates the dynamics and, on average, a per-
turbation do not grow over time. With increasing N

E
 the Lyapunov 

exponent increases until the dynamic becomes chaotic. Of course, 
in our simulations we can only study fi nite time Lyapunov expo-
nents with very large n and estimate the value to which they con-
verge. The chaotic dynamics may thus be transient. However, it 
dominates the dynamics at least over very long times.

Estimating the maximal Lyapunov exponent in networks includ-
ing excitatory interactions can be diffi cult (Hansel et al., 1998; 
Zumdieck et al., 2004; Brette et al., 2007; Cessac and Vieville, 2008; 
Kirst and Timme, 2009). Suprathreshold excitation, together with 
the infi nitely fast response of neurons receiving a spike and the sharp 
threshold may induce synchronous events. Thus even an infi nitesi-
mal small perturbation may change the order of spikes. Nonetheless 
generically the perturbation will stay infi nitesimal small, in par-
ticular for a small fraction of excitatory connections, such that we 
estimate the largest Lyapunov exponent in the following way: We 
evaluate at each time step the resulting temporal perturbation on the 
actual event as a result of earlier perturbation under the assumption 
that the order of spikes stays the same. This gives us the new pertur-
bation vector Δ

n
, which is rescaled according to (48). For long times, 

λ(n) then will give an estimate of the largest Lyapunov exponent and 
describe the generic behavior of the trajectory under the infl uence 
of suffi ciently small perturbations. However, we cannot exclude the 
occurrence of macroscopic perturbations in general.

Figures 10C,D show some numerical results: In Figure 10C the 
largest Lyapunov exponent is measured for an increasing fraction of 
excitatory connections starting with the network of Figures 1A–C 

and ending with the network of Figures 1D–F. The number of 
 excitatory connections is increased by successively choosing one 
incoming inhibitory connection per neuron to be excitatory. The 
external current, I

i
, is reduced linearly to keep the network rate 

unchanged according to I
i
 ≡ I − kN

E
, where I = 4.0 is the initial 

external current, k ≈ 1.3 10−4 and N
E
 is the number of excitatory 

connections. For a large fraction of excitatory couplings we observe 
a transition to an unstable, chaotic regime. The inset demonstrate 
the convergence of 1

1
1

n i
n

i∑ → λ=
−ln( ) maxa  (exemplarily shown for 

N
E
 = 10000). For a constant external current the rate increases with 

increasing fraction of excitatory connections (black crosses, for 
I

i
 ∈ {2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5}). The neurons’ 

fi ring rate stays almost constant, if we reduce the external current 
linearly with the number of excitatory connections (blue crosses). 
We determined the value of I

i
 at the intersection point of the 〈ν

i
〉

i
 vs. N

E
 curves with the desired frequency by linear interpolation. 

The values (I
i
, N

E
) that give rise to the desired frequency lie in 

good approximation on a straight line with slope −k ≈ −1.3 10−4 
(cf. Inset to (D)).

The result is particularly remarkable since in mean-fi eld 
descriptions of balanced networks, as long as the mean input to 
each cell is the same, the regime where N

E
 = 0 is comparable to the 

regime where N
E
 > 0 with appropriately reduced external excita-

tory current I
i
.

Temporally extended interactions
Up to now, we considered δ-coupling, where the response to an 
action potential is instantaneous. However, in biological neuronal 
systems the postsynaptic current has fi nite temporal extent. In the 
following, we investigate the infl uence of such temporally extended 
interactions. The analysis gets more complicated, because neurons 
are permanently infl uenced by incoming signals. As mentioned 
above, in our model we assume that the neuron looses the informa-
tion about previously received spikes when it reaches the threshold 
and is reset.

We modify Eq. 1 by introducing a temporally extended interac-
tion kernel g(t), such that the evolution of the membrane potential 
is given by

d

dt
V f V g t ti i i

j

N

k
ij jk ij= ( ) + − −

=

⎛
⎝⎜

⎞
⎠⎟∑ ∑

1 ∈

ε τ
�

s .  (50)

In the following analysis we consider single exponential cou-
plings, g(t) = Θ (t)·βe−βt with time scales γ−1 > β−1 > 0, the time con-
stant of the postsynaptic current is shorter than the membrane 
time constant. As an exemplary neuron model we study the leaky 
integrate-and-fi re neuron, f

i
(V

i
) = −γV

i
(t) + I

i
, but the analysis can 

easily be extended to more complex neuron models and interac-
tion kernels.

Numerical simulations show that the stability of the dynamics 
is robust against introduction of synaptic currents with small tem-
poral extent, but on increase of temporal extension a transition to 
chaos occurs. In Figure 11A, the largest Lyapunov exponent, λ

max
, 

in a random network is estimated in dependence of the decay time 
constant β−1 of the synaptic current. For small time constant β−1, the 
dynamics behaves similar to the dynamics with δ-pulse interactions, 
in particular it is stable, the largest Lyapunov exponent is negative. 



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 13 | 12

Jahnke et al. How chaotic is the balanced state?

For increasing β−1 the temporal extension becomes more and more 
infl uential and there is a transition to an unstable, chaotic regime 
with positive largest Lyapunov exponent.

We now study the linear stability properties analytically. We 
denote the last spiking time of neuron i before t

n
 by

t n i t t t
k

ik ik n0( , ) max ;= ⎛
⎝⎜

⎞
⎠⎟∈

≤
�

s s  (51)

at t = t
0
(n,i) the potential of neuron i was reset to zero. The solution 

of Eq. 50 together with the initial condition V
i
(t

0
(n,i)) = 0 is then 

given between the nth and (n + 1)th network event by

V t
I

e

t t

i n
i t t n i

j

N

k
ij ijk

,
( , )( ) = −

−
−

− −( )⎛
⎝⎜

⎞
⎠⎟

= ∈
∑ ∑

γ
+

β
β γ

ε Θ

γ1 0

1 �

r
00( , )n i t t e eijk

t t t tijk ijk( ) − −⎛
⎝⎜

⎞
⎠⎟

− − − −( )⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜⎜

Θ γ βr
r r ⎞⎞

⎠

⎟
⎟
⎟⎟
,

 

(52)

where t tijk jk ij
r s= + τ  is the reception time of the spike sent at t jk

s
 by 

neuron j at neuron i. The sum in Eq. 52 takes into account all spikes 
which are received by neuron i between t

0
(n,i) ≤ t ≤ t

n
 and therefore 

infl uence the potential V
i,n

(t). In the limit of very short temporal 
extension of the postsynaptic current, β → ∞, Eq. 52 becomes a solu-
tion of Eq. 1. After the nth event, neuron i would reach the threshold 
at some time t ′ under the assumption that there are no further inputs 
after t

n
. According to Eq. 52, t ′ is implicitly given by

VΘ,i
 − V

i,n
(A,t = t ′) = 0, (53)

where A is the vector of the original event times t
n
,…,t

n − W
,

A := (t
n
 ,…, t

n − W
), (54)

where we introduced W = max
n
{W(n)}. We now estimate the effect 

of a small perturbation Δt
n
,…,Δt

n − W
 of the event times t

n
,…,t

n − W
 

on the hypothetical event time t ′. By Eq. 53, the Jacobian of t ′, Dt ′, 
with respect to former spike times, t

n
,…,t

n − W
, is given as

Dt A
t

t
A

t

t
A

V

t
A t

n n W

i n′ = ′ … ′⎛
⎝⎜

⎞
⎠⎟

= − ′
−

−⎛

⎝

⎜
⎜
⎜

( ) ( ), , ( ) ( , ),∂
∂

∂
∂

∂
∂

1⎞⎞

⎠

⎟
⎟
⎟

⋅ ′DV A ti n, ( , ).

  
 

(55)

The linearized estimation of the displacement Δt ′of t ′ is then 
given by

Δ
Δ

Δ

∂
∂

′ ′ ⋅ = ′

−

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

−⎛

⎝

⎜
⎜
⎜

⎞

t Dt A

t

t

V

t
A t

n

n W

i n� �( ) ( , ),

1

⎠⎠

⎟
⎟
⎟

= −

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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∂
∂

Δ, ( , ) .

  
 

(56)

The special structure of V
i,n

(t) (cf. Eq. 52), more precisely the 
fact that V

i,n
(t) depends on t via t − t

k
 for k ∈ {n − W,…,n}, yields 

the identity

k n W

n
i n

k

i nV

t
A t

V

t
A t

= −
∑ − ′ =

∂
′

∂
∂ ∂

, ,( , ) ( , ). (57)

Under the condition

∂
∂
V

t
A t k n W ni n

k

, ( , ) , , ,′ ≤ = − …0 forall  (58)

we can combine Eqs. 56 and 57 and fi nd bounds for the 
displacement

min max .
{ , } { , }k n W n

k
k n W n

kt t t
= − … = − …

′Δ ≤ Δ ≤ Δ  (59)

Condition (58) implies that if neuron i sends or receives a spike 
earlier, also the threshold is crossed earlier. This always holds for 
δ-couplings, for interactions with temporal extend it restricts the 
class of patterns as we show below. Equation 59 is an analog to Eq. 
25, suffi ciently small perturbations stay bounded by the initial ones 
for fi nite times. This directly implies Lyapunov stability for periodic 
orbits. For general irregular dynamics and to prove asymptotic 
stability, the propagation of pulses through the network has to be 
studied as for the nonlinear stability analysis in the main part.

We now want to specify a class of periodic patterns which are 
stable in a network with temporally extended synaptic currents. 
The infl uence of various events on V

i,n
(A,t′) is as follows: For an 

infl uential spike receiving t
k
, Eq. 52 yields

∂
∂

β
β γ

ε∗ γ βγ βV

t
A t e ei n

k

t t t tk k, ( ) ( )( , ) ,′ =
−

−− ′− − ′−⎛
⎝⎜

⎞
⎠⎟  (60)

where ε∗ < 0 is the coupling strength from the sending neuron. For 
the last spike sending of neuron i, t

k
 = t

0
(n,i),

∂
∂

γV

t n i
A t I ei n

i
t t n i, ( ( , ))

( , )
( , ) .

0

0 0′ = − <− −

 
(61)

For any other event t
k
 a displacement of t

k
 has no infl uence on 

V
i,n

(t), here

∂
∂
V

t
A ti n

k

, ( , )′ = .0  (62)

Therefore condition (58) reduces to a condition on the left and 
right hand side of Eq. 60 and can be reformulated as

′ − >
−

⎛
⎝⎜

⎞
⎠⎟

=t t Tk d

1

β γ
β
γ

ln : ,  (63)

where t
k
 are the spikes arrival times at neuron i since the last reset 

t
0
(n,i). This means that the class of patterns where each neuron i 

does not cross the threshold for a time period T
d
 after receiving a 

spike are stable. For β → ∞ the system tends to the δ – pulse cou-
pled system and indeed T

d
 vanishes, lim ,β→∞ Td = 0  such that any 

non-degenerated orbit is stable. However, for temporally extended 
interactions unstable periodic orbits exists and also chaotic dynam-
ics is possible (cf. Figure 11A).

To illustrate our analytical fi ndings, in Figures 11B,C, we used 
a generalization of a recently introduced method (Memmesheimer 
and Timme, 2006a,b) to design two networks realizing predefi ned 
spike patterns in a network of fi ve neurons (VΘ,i

 ≡ 1.0, I
i
 ≡ 2.4, β = 8, 

τ := τ
ij
 ≡ 0.125) with temporally extended couplings. Both patterns 

are the same, but with different ISIs. In (B) all spikes are separated by 
ΔT = T

d
 + τ, which ensures that a neuron never spikes within a time 

period T
d
 after receiving a spike; in (C) we choose the ISIs smaller 

ΔT = (T
d
 + τ)/2. The lower panels illustrates the stability properties: 

The spike times of the different neurons are plotted relative to the 
spike time of neuron 1 in vertical direction. The horizontal direction 
is simulated time, different colors indicate spike times of the fi ve 
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 different neurons. At certain points in time (blue arrows) the network 
dynamics is perturbed. The dynamics in (B) is stable: After perturba-
tions of size ≈0.2 (maximum norm), the dynamics converge towards 
the periodic orbit. (C) The dynamics is unstable: a perturbation of 
size ≈10−12 leads to a divergence from the unstable periodic orbit.

DISCUSSION
Irregular spiking activity that robustly arises in balanced state mod-
els constitutes a generic feature of cortical dynamics. Here, for a 
class of models including e.g. the common leaky integrate-and-fi re 
neuron, we have shown that generic trajectories which give rise to 
the irregular balanced state can be exponentially stable. In particular, 
they are stable in purely inhibitory strongly connected networks of 
neurons with delayed couplings and with infi nitesimal synaptic time 
course. We showed that the dynamics even converges to a periodic 
orbit. However, the length of the irregular yet stable transient grows 
rapidly with network size such that for larger networks, in particular 
for biological relevant sizes, transients may dominate the dynamics 
on all relevant time scales.

Furthermore, we found that the phenomenon of stable yet 
irregular dynamics is robust against introducing some excitatory 
interactions or against increasing the synaptic time scales from zero. 
If the synaptic responses become too slow or excitatory interactions 
too many, we revealed a smooth transition from stable irregular 
dynamics to chaotic, equally irregular dynamics. We emphasize 
that we kept the network rate during this transition (and thus keep 
the balance) and that the mean fi eld descriptions (v.Vreeswijk and 
Sompolinsky, 1998; Brunel, 2000) of networks in both regimes are 
identical when the parameters are suitably chosen. Thus, highly 
irregular spiking dynamics occurs independent of the stability 
properties of the network.

Earlier studies on balanced neural activity considered a pri-
ori the limit of infi nitely many neurons in sparse networks 
(v.Vreeswijk and Sompolinsky, 1996, 1998; Amit and Brunel, 1997; 
Brunel and Hakim, 1999; Brunel, 2000). In this mean fi eld limit 
the collective dynamics is well understood. In particular in infi -
nitely large networks of binary neurons with balanced excitatory 
and inhibitory interactions the dynamics are chaotic (v.Vreeswijk 
and Sompolinsky, 1996, 1998). Further studies of fi nite networks 
found stable dynamics in weakly diluted networks of inhibi-

tory coupled neurons (Zillmer et al., 2006), as well as in globally 
 coupled networks with dominating inhibition (Jin, 2002). Recent 
analytical evidence confi rmed the existence of stable dynamics in 
inhibitory coupled networks of integrate-and-fi re neurons with a 
more complex structure (Jahnke et al., 2008a). As the inter-event 
times that underly our analysis shrink inversely proportional to 
the network size (at a given individual neuron-spiking-rate), the 
methods applied here, however, are not applicable in a straight-
forward way in associated mean fi eld models. Thus, one cannot 
make strict statements about stability in the limit of infi nitely 
many neurons. Nevertheless, as shown above, generic transients 
and periodic trajectories in arbitrarily large inhibitorily coupled 
networks are stable.

Taken together, the results show that the microscopic dynam-
ics in the considered purely inhibitorily coupled networks differs 
substantially from the dynamics of networks that explicitly include 
excitatory couplings. Whereas the latter may be chaotic, the former 
are generically stable – despite both showing the same irregularity 
features. In particular, chaotic as well as stable dynamics are equally 
well capable of generating highly irregular spiking activity. The 
smoothness of the transition to chaos, without essential change 
of the irregularity (e.g. of the large coeffi cients of variation) fur-
ther suggests that chaos is not the main dynamical origin of the 
high irregularity. We thus suggest that a mechanism different from 
chaos contributes to the irregularity of cortical fi ring patterns in 
a substantial way.

Nevertheless, chaos as well as stochastic network properties such 
as unreliable synapses, may support the robust occurrence of irreg-
ular activity in cortical networks and also modify its computational 
features. It is thus an important future task to investigate which 
anatomical and dynamical features of cortical networks are indeed 
of crucial relevance for their spiking activity and their functions.

APPENDIX
In the following we will derive the bounds Eqs. 26–28 stated in  
the Section “Asymptotic Stability”. We will track the propagation 
of the perturbation of one specifi c neuron l

0
 through the entire 

network.
All neurons spike at least once in a suffi ciently large but fi nite time 

interval T. Moreover, after τ
max

 = max
i,j
(τ

ij
) all spikes in  transit have 
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FIGURE 11 | Robustness and transition to chaos with increasing temporal extent of the postsynaptic current. (A) Largest Lyapunov exponent λmax in a random 
network (N = 50, ⏐Pre(i )⏐ ≡ 10, γ = 1, Ii ≡ 4.0, ∑ ε ≡j ij − . ,3 3 τ ≡ij iT0 1. free) versus time constant β−1 of the synaptic current. (B) Stable periodic pattern in a network with 
temporally extended interactions. (C) Time compressed, thus unstable pattern in a network with temporally extended interactions. (For details see text).
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certainly arrived at the postsynaptic neurons. We label the maximal 
number of events possible in the time interval [t,t + max{T,τ

max
}] 

by M. For purely inhibitory networks, M < ∞ due to the bounded 
neural spike rate. We denote the set of postsynaptic neurons of l

0
 by

i l lPost Post Post Post

times

0 0( ) = ( ): ,� ���	 
���� �����
i 

 (64)

thus a neuron l
i
 ∈ Posti(l

0
) is connected to l

0
 by a directed path of 

length i (cf. Figure 12). Further, we defi ne Post0(l
0
) := {l

0
}.

We estimate the bounds of the perturbation following one spe-
cifi c path from a neuron l

0
 to a neuron l. In a strongly connected 

network, l ∈ Postj(l
0
) for some j ≤ N − 1, so there is a directed 

path between l
0
 and l = l

j
 via neurons l

1
,…,l

j − 1
 in the network. 

As the consideration holds for an arbitrary path, the result is 
an universal bound of the perturbation. Initially, at n = 0, the 
neurons are perturbed by Δi

( ).0  The fi rst spiking of neuron l
0
 

after n = 0 is labeled by s
0
 ≤ M. After a delay time τl l1 0

 this spike 
is received by the postsynaptic neuron l

1
 ∈ Post(l

0
), we call the 

event r
1
 ≤ 2M. After at most M further events, at s

1
 ≤ 3M, the 

neuron l
1
 emits a spike. In general, we recursively defi ne s

i
 as 

the fi rst spiking event of neuron l
i
 ∈ Posti(l

0
) after r

i
 and r

i
 as 

the event when the spike generated by l
i − 1

 ∈ Posti − 1(l
0
) at s

i − 1
 is 

received (cf. Figure 12). Due to the defi nition of M, the relations 
s

i
 ≤ (2i+1)M and r

i
 ≤ 2iM hold.

First, we prove by induction that the perturbation of the neuron 
l
i
, before sending of a spike at s

i
, is bounded from above by

Δ Δl
s i s

l

i

i

i ic c c c( )
max min

( )
max mi

− ( ) −⎡

⎣
⎢
⎢

⎤

⎦
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( )≤ − ⋅ + − − ⋅1 1 01 1 1
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⎣
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⎦
⎥
⎥

1 0Δ
 (65)

(1) Initially neuron l
0
 is perturbed by Δ l0

0( ). Before l
0
 generates 

a spike it receives at most s
0
 − 1 inputs. According to Eq. 

14, if the neuron l
0
 receives an input its perturbation may 

increase. To fi nd an upper bound, we assume that at every 
event 0 < n < s

0
 neuron l

0
 receives an input with the maxi-

mal initial perturbation, Δmax
( ) ,0  and a minimal averaging con-

stant c
min

, which moves the average into the direction of the 
 maximal possible perturbation. Repeated application of Eq. 
(14) yields

Δ ≤ Δ + Δ

Δ ≤ Δ +
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which is the inductive statement (65) for i = 0.
(2) We assume that the statement (65) holds for Δ l

s

i

i( ),−1  which is neu-
ron l

i
’s perturbation as inherited by the spike sent at s

i
 (cf. Eq. 10). 

After at most M events the spike is received by the postsynaptic 
neuron l

i + 1
 at event r

i + 1
. In our worst- (or worse than worst-) 

case estimation, we assume that neuron l
i + 1

 is maximally pertur-
bed before it receives the spike, Δ Δli

i

+

+ − =
1

1 1 0( )
max
( ) ,r  and that the inte-

raction factor cli
i

+

+

1

1( )r  is maximal, c
max

, such that again the average is 
moved into the direction of the maximal perturbation. Therefore 
the perturbation after the interaction is bounded by

Δ ≤ Δ + Δ

≤

l
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Before s
i + 1

 > r
i + 1

 > s
i
, neuron l

i + 1
 receives at most (s

i + 1
 − 1 − r

i + 1
) 

inputs. Analogously to Eq. 66, we assume that with each event l
i + 1

 
receives a spike which is maximally perturbed (with Δmax

( )0 ), and the 
averaging constant is minimal, c

min
. This yields
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We replace c s si i i

min
− + − −+ +1 11 1r  by c si

min
+ −1 1 in Eq. 68, thereby increasing the 

right-hand side, because s
i
 − 1 − r

i + 1
 < 0. This directly yields the 

induction statement for Δ l
s

i

i

+

+ −
1

1 1( ).
Based on Eq. 65, we now derive an upper bound of the per-

turbation of all neurons after event s
N − 1

. After this event, every 
neuron has sent at least one spike which is infl uenced by the initial 
perturbation of neuron l

0
, because in a strongly connected network 

the union ∪i
N i l=

−
0
1

0Post ( ) contains all neurons of the network (cf. 

Figure 12). After the s
i
th event, neuron l

i
 can still receive spikes. 

Before the s
N − 1

th event, taken as reference, it receives in the worst 
case scenario (s

N − 1
 − s

i
) inputs with maximal initial perturbation 

Δmax
( )0  and minimal averaging factor c

min
. Using Eq. 65 we repeatedly 

apply Eq. 14 (s
N − 1

 − s
i
) times which leads to

Δ Δl
s i s s s
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(69)
 

The right-hand side increases with i, therefore the perturbation 
of an arbitrary neuron j ∈ {1,…,N} after s

N − 1
 events is bounded 

from above by

Δ Δj
s N s

l
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 (70)

At the s
N − 1

th event there can be D′ spikes per neuron in tran-
sit which are, in the worst-case scenario, assumed to have the 
 maximal perturbation. Due to their arrival after the s

N − 1
th event, 

the  perturbations of neurons can still increase. However, after 
s

N − 1
 + M events all spikes generated before the s

N − 1
th event have 

events

s0

s1

s2

r3

r2

r1

l0

l1

l2

l33

21

FIGURE 12 | Tracking the propagation of a pulse. Here neuron l0 = 1 (black) 
is fi xed as the initial neuron. The sets of postsynaptic neurons are: Post(1) = {2} 
(blue), Post2(1) = {1, 3} (green), Post3(1) = {1, 2} (red). Following one specifi c 
path through the network, we label the fi rst spike event of neuron li ∈ Posti(l0) 
after receiving an input from li − 1 ∈ Posti − 1(l0) si. The event when the generated 
spike is received by li + 1 is labeled ri + 1. In a strongly connected network of size 
N the union ∪ i

N i l N=
− , ,0
1

0 1( ( )) { }Post = …  contains all the neurons, because any two 
of them are connected by a directed path of maximal length N − 1.
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arrived at the corresponding postsynaptic neurons. Taking into 
account the arrival of these spikes using Eqs. 14 and 70, we fi nd an 
upper bound for the perturbation after s

N − 1
 + M events,

Δ ≤ Δj
s M N s M

l

N

N Nc c− −+( ) −( ) − +( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

− ⋅ ⋅

+ −

1 1
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⎢
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⎤

⎦
⎥
⎥

−c c s MN

max min max
( ) .Δ  (71)

Due to the fact that generated spikes inherit a perturbation 
present in the phases at spike sending time, the bound (71) holds 
also for the perturbation of spikes generated after the s

N − 1
th and 

before the (s
N − 1

 + M)th event, because the bound (71) limits the 
maximal perturbation for all neurons between the s

N − 1
th and the 

(s
N − 1

 + M)th event.
We conclude that the perturbations of the neurons and the spikes 

in transit after K := 2NM ≥ s
N − 1

 + M events are bounded by

Δ Δj
K N NM

l

N
c c c c( )

max min
( )
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Therefore, we fi nd an upper bound for the maximal perturba-
tion Δmax

( )K  after K events,

Δ ≤ ∗ Δ + ∗ Δmax
( ) ( )

max
( ) .K

lc c⋅ − ⋅⎡
⎣⎢

⎤
⎦⎥0

0 01  (73)

with

0 1 1
1

4

1 2 1< = − ⋅ − ⋅−( ) − ( )c c c c c
N NM∗ ≤ ≤: ,max min max max  (74)

3

4
1 1≤ ∗ <( ) .− c  (75)

Similarly, we fi nd a lower bound for the minimal perturbation 
after K events

Δ ≥ ∗ Δ + ∗ Δmin
( ) ( )

min
( ) ,K

lc c⋅ − ⋅⎡
⎣⎢

⎤
⎦⎥0

0 01  (76)

by an estimation analogous to the one above, where only Δmax
( )0  has 

to be replaced Δmin
( )0  and the relation “≤” has to be replaced by “≥”. 

We note, that we did not have to specify the perturbation Δ l0

0( ) to 
derive this result.
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