
Frontiers in Integrative Neuroscience www.frontiersin.org June 2009 | Volume 3 | Article 10 | 1

INTEGRATIVE NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 01 June 2009
doi: 10.3389/neuro.07.010.2009

Behavioral modulation of stimulus-evoked oscillations in 
barrel cortex of alert rats

Subramaniam Venkatraman1 and Jose M. Carmena1,2,3*

1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
2 Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
3 Program in Cognitive Science, University of California, Berkeley, CA, USA

Stimulus-evoked oscillations have been observed in the visual, auditory, olfactory and 
somatosensory systems. To further our understanding of these oscillations, it is essential 
to study their occurrence and behavioral modulation in alert, awake animals. Here we show 
that microstimulation in barrel cortex of alert rats evokes 15–18 Hz oscillations that are 
strongly modulated by motor behavior. In freely whisking rats, we found that the power of the 
microstimulation-evoked oscillation in the local fi eld potential was inversely correlated to the 
strength of whisking. This relationship was also present in rats performing a stimulus detection 
task suggesting that the effect was not due to sleep or drowsiness. Further, we present a 
computational model of the thalamocortical loop which recreates the observed phenomenon 
and predicts some of its underlying causes. These fi ndings demonstrate that stimulus-evoked 
oscillations are strongly infl uenced by motor modulation of afferent somatosensory circuits.
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modulation. During quiet immobility, whisker defl ections evoke 
large-amplitude, highly distributed cortical sensory responses 
(Castro-Alamancos and Oldford, 2002; Fanselow and Nicolelis, 
1999; Ferezou et al., 2007; Hentschke et al., 2006; Lee et al., 2008; 
Scaglione and Moxon, 2006). Whereas, during active whisking, pas-
sive whisker defl ections evoke small-amplitude localized sensory 
responses. Hence sensory responses in the rat whisker system are 
thought to be dynamically modulated by motor behavior.

It is believed that this may function as a sensitive detection sys-
tem (a wake-up call), alerting the animal to unexpected sensory 
inputs (Ferezou et al., 2007). We show that this effect can be recapit-
ulated by replacing sensory stimulation with cortical microstimula-
tion. The neural response to microstimulation can be considered 
to be the impulse response function of the thalamocortical loop 
(Freeman, 2000). Thus studying microstimulation evoked neural 
responses presents an excellent method to explore modulation of 
the thalamocortical loop by behavioral state.

Further, we explore whether cortical microstimulation evoked 
oscillations in the rat somatosensory system are also modulated by 
motor behavior. Similar modulation to that observed in sensory 
responses would suggest that both phenomena are brought about 
by common or related underlying causes. It would also provide an 
experimental link between stimulus-evoked oscillations and modu-
lation of afferent somatosensory circuits by motor behavior.

MATERIALS AND METHODS
ANIMALS
Five adult female Sprague-Dawley rats weighing 200–300 g were 
used in this study. They were initially handled for 1 week and trained 
to sit calmly while restrained in a cloth bag and body restrained in 
a semi-cylindrical tube. Once rats learned to sit quietly, they were 
implanted with microwire arrays. All animal procedures conformed 

INTRODUCTION
Since their original description (Bartley and Bishop, 1932; Chang, 
1949), stimulus-evoked neuronal oscillations have been intensely 
studied. In the visual cortex, non stimulus-locked (induced) oscil-
lations in the gamma range (30–60 Hz) (Friedman-Hill et al., 2000; 
Gray and Singer, 1989; Jagadeesh et al., 1992) and 5–8 Hz stimulus-
locked (evoked) oscillations have been observed (Dinse et al., 1997). 
In the auditory system, tone and click-evoked oscillations in the 
10–12 Hz range have long been observed (Galambos et al., 1952; 
Sally and Kelly, 1988) but are thought to occur only in anesthetized 
animals (Cotillon-Williams and Edeline, 2003). In the somatosen-
sory system, whisker defl ection evoked oscillations in the 10–15 Hz 
range have been observed in anesthetized animals (Ahissar et al., 
2003; Muthuswamy et al., 1999) and during early development 
in awake animals (Khazipov et al., 2004). Spontaneous and odor 
induced oscillations in the olfactory system are also widely studied 
phenomena (Freeman, 2000; Delaney et al., 1994).

Cortical microstimulation in sensory areas is known to elicit 
an oscillatory response in both anesthetized and awake animals 
(Contreras and Steriade, 1996; Contreras et al., 1997). These oscil-
lations are similar to the tone-evoked oscillations observed in the 
auditory system and their thalamic origin has been well estab-
lished (Contreras and Steriade, 1996; Cotillon and Edeline, 2000). 
While the occurrence of stimulus-evoked oscillations in anesthe-
tized animals has been well documented, experiments on awake 
subjects have yielded confl icting results (Cotillon-Williams and 
Edeline, 2004). To shed light on the functional signifi cance of these 
oscillations, it is essential to study their occurrence and behavioral 
modulation in alert, awake animals.

Modulation of afferent sensory transmission by active move-
ment is a well known phenomenon (Shin and Chapin, 1990). The 
rodent vibrissa system provides an excellent model to study this 
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to the NIH and USDA regulations and were approved by the UC 
Berkeley Animal Care and Use Committee.

SURGICAL PROCEDURE
Microwire arrays with two 35 µm diameter Platinum/Iridium stim-
ulating electrodes (CD Technologies, Durham, NC, USA) and 16 
tungsten recording electrodes (35 µm diameter, 8 × 2 array) were 
implanted in barrel cortex. Rats were anaesthetized with keta-
mine–xylazine supplemented with isofl urane gas anesthesia. After a 
craniotomy and durotomy, the electrode array was stereotactically 
inserted into the infragranular layer of the primary somatosensory 
barrel fi eld (S1bf) in one hemisphere. Stereotaxic coordinates rela-
tive to bregma were used to center the arrays in S1bf [anteropos-
terior (AP), −3.0 mm; mediolateral (ML), +5.5 mm; dorsoventral 
(DV), −1.2 mm]. The craniotomy was sealed with cyanoacrylate 
and the array was fi rmly attached to the skull using dental acrylic. 
Intraoperative recording of multiunit activity and post-operative 
receptive fi eld mapping, using the MAP system (Plexon Inc, Dallas, 
TX, USA), were used to ensure that arrays were located in barrel cor-
tex. Placement of electrodes in the infragranular layer was verifi ed 
by comparing the polarity of observed spontaneous oscillations to 
known depth profi les of oscillations (Kandel and Buzsaki, 1997).

CORTICAL MICROSTIMULATION
Biphasic stimulating pulses were delivered through bipolar 200–
500 kΩ platinum/iridium microelectrodes (AM Systems pulse 
generator and stimulus isolation unit, Sequim, WA, USA). Pulse 
length was set to 250 µs and the stimulation typically consisted of 
two pulses of 10–20 µA separated by 3 ms. Microstimulation was 
delivered while rats were restrained and the interval between pulses 
was varied in a pseudo-random manner between 1–5 s.

WHISKER TRACKING
A full description of the real-time video tracking and closed-loop 
microstimulation system used in this work has been published 
previously (Venkatraman et al., 2009). In brief, rats were body 
restrained and one whisker was tagged using a light self-adhesive 
foam marker. We did not head-fi x rats since this led to increased 
signs of stress and signifi cantly reduced instances of spontane-
ous whisking. The video tracking system captured video at 100 
frames/s using an EC-640C camera (Prosilica, Burnaby, BC, 
Canada) placed above the rat and used custom software to track 
the whisker marker.

CORRELATION ANALYSIS
We defi ned the power of the evoked neural oscillation as the power 
in the 10–20 Hz band of the local fi eld potential (LFP) 100–500 ms 
post-microstimulation. The strength of whisking was defi ned as the 
power in the 5–20 Hz band of the recorded whisker trace 0–100 ms 
pre-stimulation. The correlation between these two metrics was 
defi ned as the correlation between the power of the evoked oscil-
lation and the strength of whisking.

It is conceivable that state dependent evoked responses could 
occur if rats were ‘quiet’ for the fi rst half of the trials and awake and 
‘whisking’ for the next half. To demonstrate that rats showed rapid 
transitions between behavioral states, we calculated the correla-
tion between evoked neural oscillations and whisking strength at 

some time lag (t seconds, t < 1). If behavioral states changed on the 
order of tens of seconds, one would expect that whisking strength 
‘t’ seconds prior to stimulation would be highly correlated to the 
strength of stimulus evoked oscillations. However, if behavioral 
states changed rapidly, one would expect that this correlation would 
drop off rapidly with increasing magnitude of ‘t’.

RESULTS
BEHAVIORAL MODULATION
Neural responses to cortical microstimulation have been studied 
by several researchers (reviewed in Tehovnik et al., 2006). Cortical 
microstimulation typically triggers nearby neurons to fi re spikes 
immediately after stimulation. This is followed by a prolonged 
period (∼100 ms) of decreased fi ring rate (mediated by inhibitory 
circuits (Butovas et al., 2006) followed by a short rebound excitation 
and return to baseline fi ring rate (Butovas and Schwarz, 2003). We 
observed a similar neural response to microstimulation in awake, 
freely roaming rats (Venkatraman et al., 2009). However we also 
noticed a fraction of trials where this response was followed by 
oscillations phase-locked to the stimulation.

To investigate whether the variability in evoked oscillations was 
related to motor activity in the whisker system, we tracked the 
position of a single whisker in awake rats while microstimulat-
ing at random intervals (1–5 s). The neural response to micro-
stimulation when rats were actively whisking showed a small 
initial inhibition and no subsequent oscillations (Figure 1A). In 
contrast, we found that when rats were quietly immobile, the 
LFP response to microstimulation consisted of ∼15 Hz oscilla-
tions following the initial prolonged inhibition (Figure 1B). The 
multiunit activity showed burst fi ring coherent with the negative 
defl ections of the LFP.

We observed a signifi cant negative correlation between the 
power of the evoked LFP oscillation and the strength of whisk-
ing (R = −0.50, P < 0.001; Figure 2). This is further illustrated in 
Figure 3 where 50 trials with lowest whisking strength were clas-
sifi ed as ‘Quiet’ and 50 trials with the highest whisking strength 
were classifi ed as ‘Whisking’. The raster and average LFP response 
when ‘Quiet’ show evoked oscillations in response to cortical 
microstimulation (Figure 3A). We calculated the power spectral 
density of the LFP response during time 100–500 ms post-micro-
stimulation in each trial. The average of all such power spectral 
densities shows a peak at 17 Hz (Figure 3B). The initial multiunit 
response to cortical microstimulation (2–10 ms post stimulation 
in Figure 3C) in ‘Quiet’ trials was statistically similar to ‘Whisking’ 
trials (considering 15 multiunits from the same animal, paired 
Student’s t-test, P > 0.25) suggesting that cortical excitability is not 
modulated by behavior. However, microstimulation in ‘Quiet’ tri-
als evoked a stronger inhibition (comparing LFP 20–100 ms after 
stimulation, Mann–Whitney two-tailed test, P < 0.001) and more 
pronounced evoked oscillations (comparing power spectral den-
sity of LFP 12–18 Hz, Mann–Whitney two-tailed test, P < 0.001). 
94% of the evoked responses in ‘Quiet’ trials showed higher spec-
tral power in the 12–18 Hz band compared to the average power 
in whisking trials showing that oscillations were reliably evoked 
in quiet trials. These analyses show that the neural response to 
microstimulation is strongly dependent on the behavioral state 
of the animal. Similar behavioral modulation of neural responses 
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was observed in a total of fi ve rats (Figures 3, 5 and 6 are obtained 
from data from three different rats). It should be noted that there 
was no explicit sign of bodily activity such as whisker movement 
or twitching correlated with the evoked oscillations. Further, the 
evoked oscillations died down within 500 ms and never resulted 
in kindled seizures.

CAUSE OF MODULATION
It is conceivable that behavioral modulation of evoked responses 
could be caused by the state of alertness or arousal of the animal. It 
is well known that the state of arousal of the animal modulates the 
response properties of the thalamocortical network (as reviewed in 
Castro-Alamancos, 2004; McCormick and Bal, 1997). To explore 
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FIGURE 1 | Evoked responses to cortical microstimulation. (A) 1–200 Hz 
local fi eld potential (LFP) and 0.5–10 kHz multiunit activity (Spike) recorded from 
two electrodes in infragranular layer of barrel cortex of awake rats are shown 
along with traces of whisker movements. Microstimulation (at 0 s) delivered 
during active whisking typically induced a small neural response which is 

partially obscured by the stimulus artifact at 0 s. (B) On the other hand, 
microstimulation delivered during periods of no whisker movement typically 
induced a long period of reduced neural activity followed by a series of 15–18 Hz 
rhythmic oscillations in the LFP and concomitant spike bursts in multiunit 
recordings.
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FIGURE 2 | Correlation between whisking and evoked LFP oscillations. (A) Example LFP trace of microstimulation evoked oscillations. (B) Spectrogram of 
above LFP trace. The power in the 10–20 Hz band from 100–500 ms after microstimulation is used as a metric of the power of the evoked LFP oscillation (dashed 
black box). (C) Scatter plot shows an inverse relation between the power of the evoked LFP oscillations and the strength of whisking in 300 stimulations on one rat.
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whether level of alertness played a role in our experimental setup, 
we measured the power in the delta frequency band (1–4 Hz) of 
the LFP which is often used as a marker of alertness (Hentschke 
et al., 2006). We found that the power of the microstimulation-
evoked oscillations was not signifi cantly correlated to 0–500 ms 
pre-stimulus delta power (R = 0.02, P > 0.5). This suggests that 
level of alertness were not an infl uencing factor in the observed 
modulation.

Another potential source of modulation could exist if rats 
fell asleep when quiet. To rule out this possibility, we examined 

 occasions where the neural response to microstimulation was sig-
nifi cantly different on closely spaced stimulations (Figure 4A). To 
demonstrate that rats showed rapid transitions between behavioral 
states, we calculated the correlation between evoked neural oscilla-
tions and whisking strength ‘t’ seconds before or after  stimulation. 
This analysis reveals to what degree whisker movements more 
distant in time from the microstimulation infl uenced the evoked 
oscillations. If behavioral states changed slowly, one would expect 
that whisking strength ‘t’ seconds prior to stimulation would be 
strongly correlated to the strength of stimulus evoked oscillations. 
We found that the correlation dropped off rapidly with a time lag 
as low as 500 ms (Figure 4B) implying rapid transitions between 
behavioral states. Such rapid transitions (Hentschke et al., 2006) 
are incongruent with sleep and more likely caused by rapid changes 
in motor behavior.

To further ensure that animals were awake and alert, we trained 
two rats on a variable interval tone detection task while restrained. 
A tone was played after random intervals and rats learned to wait 
and respond to the tone with a lick within 1 s. We also delivered 
cortical microstimulation randomly 0.5–1 s before the occurrence 
of the tone. During this period, rats would sometimes sit in a 
quiet immobile state and sometimes actively whisk. This micro-
stimulation did not have any relevance to the behavioral task but 
we could now analyze the neural response to microstimulation 
considering only those trials where rats responded within 1 s after 
the tone. We repeated the analysis of Figure 2 on this dataset and 
found very similar results (Figure 5). The reaction time on the 
task was in fact lower when the rats were quiet than when they 
were whisking (Median response time when quiet = 0.30 s and 
whisking = 0.56 s, Mann–Whitney two-tailed test, P < 0.001) sug-
gesting that the rats were equally if not more alert when quiet. 
Taken together, these results argue against the possibility that 
alertness, arousal or sleep play a role in the behavioral modula-
tion observed in this work.
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FIGURE 3 | LFP and multiunit evoked responses. (A) Raster plot and 
average evoked LFP responses to cortical microstimulation (at 0 s) in 
‘whisking’ and ‘quiet’ trials. (B) The average power spectral density of the LFP 
during the period 100–500 ms after microstimulation in whisking and quiet 
trials. (C) Raster and histogram of evoked multiunit responses to 
microstimulation during whisking and quiet trials. The quiet trials show a lower 
baseline fi ring rate, a prolonged inhibition and oscillatory bursting but the initial 
excitation (0–5 ms) is similar to that observed when whisking.
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FIGURE 4 | Time constant of behavioral states. (A) Example of whisking 
trace and LFP responses to two closely spaced microstimulations. The time of 
microstimulation is indicated using black arrows. The signifi cant difference in 
LFP response shows that evoked responses to microstimulation are rapidly 
modulated by changes in motor behavior. (B) The correlation between LFP 
oscillation power and whisking strength is plotted at different time lags with 
the correlation (R) on the Y-axis and the ‘P’ value of each correlation indicated 
in red. Note that the correlations are negative with the highest magnitude of 
correlation (−0.50) occurring at 0 lag. The rapid drop-off in the correlation 
implies rapid switching of behavioral states.
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This leads us to the conclusion that the observed effect is likely 
caused by motor modulation of the somatosensory thalamocortical 
loop. It should be noted that there exist points in the lower left hand 
corner of Figures 2C and 5B demonstrating that the relationship 
between whisking strength and evoked oscillations in not purely 
linear. This suggests that although motor behavior is a dominant 
modulator of the somatosensory thalamocortical loop, other causes 
of modulation (like attention) exist.

We then investigated the effect of varying the microstimulation 
parameters on the evoked neural response. Increasing the ampli-
tude of stimulation led to oscillatory evoked responses even in 
actively whisking rats (Figure 6). The neural response to 10 µA 
stimulation (Figure 6A) was strongly modulated by behavior 
whereas 30 µA stimulation (Figure 6B) evoked oscillations irre-
spective of behavioral state. This is also evidenced in the reduction 
of the correlation between oscillation power and whisking strength 
in 30 µA stimulation. This suggests that a strong volley of spikes 
can evoke oscillations even when the network is in the ‘tonic’ state. 
The increase in intensity of stimulation increased the amplitude 
of the evoked oscillations but did not alter the frequency. This is 
consistent with previous experiments performed under anesthesia 
(Contreras and Steriade, 1996).

RELATION TO SPONTANEOUS RHYTHMS
In the rat somatosensory system, two prominent <20 Hz oscilla-
tions have been observed. Sleep spindles are 7–14 Hz oscillations 
observed in early stages of sleep that wax and wane over a period of 
1–3 s (Steriade et al., 1990). Spontaneous spindles are also observed 
under ketamine–xylazine anesthesia but only show a waning phase 
(Contreras and Steriade, 1996). Cortical microstimulation evoked 
oscillations appear very similar to spontaneous ketamine spindles 
(Figure 7A). This agrees with the hypothesis that spindles are often 
initiated by a naturally occurring synchronous volley of spikes from 
the cortex (Fuentealba et al., 2004). The corticothalamic nature 
of spontaneous ketamine spindles and cortical  microstimulation 

evoked oscillations has been well established (Contreras and 
Steriade, 1996; Fuentealba et al., 2004).

The second prominent oscillations occur in the 8–10 Hz band 
and are known to spontaneously occur in quiet immobile rats. They 
have been variously called high voltage rhythmic spikes (HVRS) 
(Shaw, 2007), high voltage spike-and-wave spindles (HVSs) 
(Kandel and Buzsaki, 1997), Mu Rhythms (Fontanini and Katz, 
2005; Nicolelis and Fanselow, 2002) and Spike Wave Discharges 
(SWDs) (Kelly, 2004). An example of such an oscillation in an 
awake rat is shown in Figure 7B and its average power spectral 
density is shown in Figure 7C. This fi gure clearly demonstrates that 
SWDs have a different frequency range compared to the observed 
microstimulation evoked oscillations. It should also be noted that 
the pre-stimulus period of Figures 3 and 5 do not show any promi-
nent LFP oscillations. We discarded the few stimuli which occurred 
during ongoing 8–10 Hz oscillations to ensure that they did not 
play a role in the observed effects.

MODELING
A number of detailed computational models of thalamic and tha-
lamo-cortical networks have been developed (Destexhe et al., 1993; 
Wang et al., 1995) which provide insight into some of the basic 
neuronal mechanisms underlying thalamocortical oscillations. We 
constructed a population model in MATLAB (MathWorks Inc., 
Natick, MA, USA) to explore the possible origins of the evoked 
neural oscillations in response to cortical microstimulation. This 
model was based on the one developed in (Suffczynski et al., 2004) 
to explore the transitions between spontaneous spindle oscillations 
and SWDs. We extended this model to better account for the effect 
of modulatory neurotransmitters in the thalamus by modeling the 
Na+ and K+ leak currents (g

Na leak
 and g

K leak
). This model recreates pat-

terns of evoked oscillations allowing us to infer what properties are 
necessary and suffi cient to account for the observed phenomena.

The model consists of four sub-parts modeling thalamic relay cells 
(TC), reticular thalamic cells (RE), pyramidal neurons in the cortex 
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(PY) and inhibitory interneurons in the cortex (IN) (Figure 8A). 
The transformation between mean membrane  potential and fi ring 
rate in thalamic neurons takes into account the I

T
 current which 

underlies burst fi ring. Cortical microstimulation was modeled by 
the injection of a strong excitatory input on PY and IN neurons for 
5 ms. It was assumed (as in Suffczynski et al., 2004) that cortical LFP 
recordings show similar behavior to the negative of the mean mem-
brane potential of the PY cell population. The equations governing 
the TC neurons are shown in detail in the Appendix.

The model recreates the evoked LFP oscillations in response 
to cortical microstimulation (Figure 8B). According to the model 
(Figure 8C), the initial burst of spikes in response to cortical micro-
stimulation causes a prolonged hyperpolarization of neurons due to 
the activity of GABA

B
 receptors in the thalamus and cortex. This is 

in agreement with (Butovas et al., 2006) and the fact that GABA
B
 is 

typically activated only by a strong volley of spikes as created by cor-
tical microstimulation. Prolonged hyperpolarizations of RE neurons 
are known to precede spontaneously occurring spindle oscillations 
(Fuentealba et al., 2004). This hyperpolarization likely deinactivates 
the Ca2+ dependent T-current (I

T
) leading to a low threshold spike 

and rebound excitation. In a similar manner, the microstimulation 
evoked hyperpolarization sets off evoked oscillations in the model 
by a combination of GABA

A
 mediated IPSPs (Figure 8C) and the 

intrinsic bursting property of TC and RE neurons. The oscillations 
are further transferred to the cortex by the TC neurons.

The precise neuromodulatory mechanism by which motor activity 
modulates the somatosensory thalamocortical system is unknown. 
Potential modulatory neurotransmitters are acetylycholine, sero-
tonin, norepinepherin etc which act primarily by modifying the 
potassium leak conductance (g

K leak
) in thalamic and reticular neu-

rons (McCornick, 1992). Moreover, the sensory input to thalamic 
neurons is expected to be higher during active whisking. Reducing 
g

K leak
 in RE and increasing sensory inputs led to depolarization of 

RE neurons in the model. We found that the evoked response now 
showed a reduced inhibition and no oscillations in a manner similar 
to that observed in actively whisking rats (Figure 8D). Further, it is 
known that the administration of GABA

A
 antagonists to the ferret 

LGN in vitro slowly perverts normal spindle waves into a highly 
synchronized slow oscillation similar to SWDs. Blocking of GABA

A
 

in the model led to a similar result (Figure 8E).
This model suggests that the oscillatory properties of TC and 

RE neurons can account for the evoked oscillations and behavioral 
modulation seen in our experiments. The exact mechanisms under-
lying spindle initiation and synchronization are not completely 
understood (Fuentealba and Steriade, 2005). Future models of 
evoked thalamocortical oscillations should include the hyperpo-
larization-activated current I

h
 and the Ca2+-activated currents I

K[Ca]
 

and I
CAN

 which are thought to play a role in spontaneous spindles 
(Destexhe et al., 1993). Further, norepinephrine and serotonin are 
known to abolish spindle wave generation through an enhance-
ment of I

h
 in TC neurons (Lee and McCormick, 1996) and this 

mechanism may contribute to behavioral modulation.

DISCUSSION
In this work, we have demonstrated that microstimulation-evoked 
oscillations in rat barrel cortex are strongly modulated by active 
whisking. This phenomenon is also seen in alert rats engaged in a 
challenging behavioral task, suggesting that the observed modula-
tion is truly motor driven.

STARTLE RESPONSE
Modulation of the whisker sensory system by motor behavior has 
been observed by a number of researchers (Castro-Alamancos and 
Oldford, 2002; Fanselow and Nicolelis, 1999; Ferezou et al., 2007; 
Hentschke et al., 2006; Lee et al., 2008). During active whisker 
movements, somatosensory afferent circuits seem to act like a  linear 
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Nucleus
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cells

Sensory Input

Microstimulation
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Inactivated GABA
A

Cortical LFP

–0.5             0             0.5 –0.5              0              0.5

–0.5              0            0.5 –0.5              0              0.5

–0.5              0            0.5
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Inhibitory
Synaptic currents
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E

FIGURE 8 | Thalamocortical model. (A) Computational model of the 
thalamocortical loop used to investigate potential mechanisms of the 
experimentally observed evoked responses. The green arrows denote excitatory 
connections and the red arrows inhibitory. (B) Evoked LFP response of the 
thalamocortical model to a burst of spikes in the cortex (at 0 s) shows a similar 
response to experimentally observed data. (C) The model suggests that a 

GABAB mediated IPSP in thalamocortical cells plays a signifi cant role in the initial 
prolonged inhibition. A series of GABAA mediated IPSPs in thalamic neurons 
along with their intrinsic bursting properties seem to be responsible for the 
oscillatory evoked response. (D) The evoked response in the modeled whisking 
state is similar to that experimentally seen. (E) Application of GABAA antagonists 
induces lower frequency sustained oscillations in the thalamocortical model.
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low-gain input stage to faithfully transmit patterns of spikes from 
the periphery. In contrast, during quiet immobility, the system 
seems to act like a non-linear high-gain input stage to optimally 
detect and magnify single stimuli. This may function as a sensitive 
detection system (a wake-up call), alerting the animal to unexpected 
sensory inputs (Ferezou et al., 2007). Moreover, this modulation 
persists after transaction of the infraorbital nerve (Hentschke et al., 
2006) suggesting that it is not caused by afferent sensory signals and 
must be central in origin. This gating of sensory inputs is thought 
to occur at the level of the brainstem and the thalamus (Lee et al., 
2008). Our fi ndings show that the neural response to microstimu-
lation in barrel cortex is also modulated by active whisking. This 
occurs in the form of modulation of the initial inhibition as well 
as the long-lasting evoked oscillations.

The question then arises as to whether whisker defl ection also 
sets off the kind of oscillatory evoked responses seen in response to 
cortical microstimulation? Whisker defl ection evoked oscillations 
at 16 Hz have been observed in anesthetized animals (Ahissar et al., 
2003; Muthuswamy et al., 1999) but are typically not seen in awake, 
behaving rats. This could be due to a number of factors. Cortical 
microstimulation, even at low stimulus levels, might excite more 
thalamic spikes than caused due to physical whisker defl ections. 
Further, it is known that stimulation of pre-thalamic neurons is 
less effective at setting off oscillations than cortical stimulation 
(Steriade et al., 1990). This is thought to be because cortical stimu-
lation directly excites RE neurons whereas pre-thalamic afferent 
fi bers and incoming sensory stimuli do not.

Intracellular recordings in RE neurons (Contreras and Steriade, 
1996) have shown that cortical microstimulation triggered oscilla-
tions increase in amplitude as the cells are hyperpolarized from −54 
to −75 mV. The modulation of evoked oscillations by whisking of 
rats suggests that motor behavior rapidly depolarizes somatosen-
sory reticular neurons. This modulation of membrane potential can 
be readily achieved by neurotransmitters like acetylcholine, serot-
onin, norepinephrine etc by varying the K+ leak conductance. This 
mechanism potentially also plays a role in behavioral modulation of 
sensory evoked responses observed in the rat whisker system. This 
hypothesis can be verifi ed in future experiments using patch clamp 
recordings of RE neurons in awake, behaving rodents.

EVOKED OSCILLATIONS
The functional role of stimulus-evoked oscillations has been the 
subject of much debate. It has been suggested that bursting, as seen 
in microstimulation-evoked responses, may provide better signal to 
noise and thus facilitate detection of a stimulus (Sherman, 2001). 
However, it has also been found that the thalamus is insensitive to 
external inputs during spindles and hence spindles are thought 
by some to represent a cutoff from the external world (Llinas and 
Steriade, 2006).

Sensory stimuli like tones and fl ashes of light also evoke oscil-
latory responses under certain circumstances and this seems to 
be an intrinsic property of the thalamocortical loop (reviewed in 
Dinse et al., 1997). One potential signifi cance of this phenomenon 
is that a single volley of afferent spikes sets up a response outlast-
ing by several hundred times the duration of the original stimulus. 
This may constitute a mechanism for the persistence of a men-
tal impression aroused by a sensory stimulus. Recent evidence of 

replay of  hippocampal spike trains coinciding with thalamocortical 
spindles (Siapas and Wilson, 1998) gives further credence to this 
hypothesis.

SENSORY NEUROPROSTHESES
Cortical microstimulation has been proposed as a method to deliver 
sensory percepts to circumvent damaged sensory receptors or path-
ways. To achieve desired encoding of percepts, it is essential to better 
understand the neural response to cortical microstimulation.

Recent work (Butovas et al., 2006) has suggested that the inhibi-
tory period seen following cortical microstimulation is caused pri-
marily through the infl uence of GABA

B
 receptors in the cortex. 

The evoked oscillations we observe, and our model, suggest that 
thalamic neurons play a signifi cant role in the observed response. 
These results can be reconciled since the experiment used to infer 
the role of GABA

B
 involved an intraperitonal administration of 

GABA
B
 antagonist making it impossible to distinguish between 

the role of GABA
B
 at the level of the cortex or thalamus. Further, 

previous research (Grenier et al., 1998) has shown that the reticular 
nucleus plays a leading role in the rebound excitation observed in 
the cortex. It is therefore essential to keep in mind the excitation of 
thalamic neurons by cortical microstimulation during the design 
of stimulation protocols.

Thalamic gating modulates sensory inputs based on the behav-
ioral state of the animal. As shown in this work, this mechanism 
also modulates the neural response to cortical stimulation. Further, 
behavioral state dictates whether thalamic neurons are in the 
tonic or burst fi ring mode and the resultant response to cortical 
microstimulation. Therefore it may be essential, in future sensory 
neuroprostheses, to modify stimulation parameters based on the 
behavioral state or background neural activity of the user in order 
to deliver desired percepts.

APPENDIX
Equations governing the TC block of the model:

C
V

t
I I I g V V

g V V

d

d
TC

AMPA GABA GABA K leak TC K

Na leak TC Na

A B
= − − − − −( )

− −(( )
C is the membrane capacitance (1 µF/cm2), V

TC
 is the membrane 

potential of TC neurons, I
AMPA

, I
GABA

 represent synaptic conduct-
ances, g

K leak
 (0.02 mS/cm2) and g

Na leak
 (0.01 mS/cm2) represent 

potassium and sodium leak conductances, V
K
 (−100 mV) and V

Na
 

(−55 mV) represent the reversal potential of the leak currents. The 
synaptic currents for AMPA are given by:

I g V VAMPA AMPA TC AMPA= −( )
g

AMPA
 denotes the synaptic conductance and V

AMPA
 (0 mV) denotes 

the reversal potential of the synaptic current. Synaptic conductances 
were modeled by convolving incoming spike fi ring rate [pulse (t)] 
with a synaptic impulse response function h

AMPA
(t):

g t h t
t

AMPA AMPA PYpulse d( ) ( ) ( )= −
−
∫
∞

τ τ τ

h t A a t a t
AMPA AMPA e eAMPA AMPA( ) = −( )− −1 2
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Similar equations were used to calculate synaptic currents due to 
GABA

A
 and GABA

B
. GABA postsynaptic currents were assumed to 

increase nonlinearly with the fi ring density of RE and IN neurons. 
The nonlinear activation function is of the form:

B( )
( )/

pulse
eRE pulseRE

=
+ −

1

1 θ σ

Membrane potential was converted to pulse densities using a sig-
moidal transfer function with an extra component to account for 
burst fi ring in thalamic neurons that occurs at hyperpolarized 
membrane potential levels.

pulse
eTC TC TC TC TC TCTC

=
+

+ ( ) ( )−

G
G m V n Vs

V S S1 ( )/ infθ σ

n V h t n Vn

t

TC TC TC TC d( ) = − ( )∫ ( ) infτ τ
−∞

h t Nn
n t n t( ) = −( )− −e e1 2

m

n
e

V

V

m m

n n

TC

TC

e TC

TC

inf ( )/

inf ( )/

=
+

=
+

−

−

1

1
1

1

θ σ

θ σ

Physiological parameters used in this model were obtained from 
Suffczynski et al. (2004) and Wang et al. (1995). The entire model 
(in MATLAB) is available from the corresponding author upon 
request.
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