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polarization, also participates in the LTS in 
TC cells, particularly during sleep spindles. 
The effects of its distribution within the TC 
cell could also be studied with compart-
mental models, in  conjunction with the 
distribution of the T-currents. The optimal 
distributions of these currents may not be 
independent of each other, so they need to 
be jointly varied.

The calcium that enters the neuron 
during an LTS must be internally bound 
or extruded to maintain the equilibrium 
of free calcium in the cell in the long 
term. This is accomplished by Ca2+/Na+ 
metabolic exchangers in the plasma mem-
brane. Reducing the number of T-channels 
needed to trigger an LTS would reduce the 
number of calcium ions that need to be 
extruded later, and hence would reduce 
the energy that the TC cell must expend to 
function. In the hippocampus, nonmyeli-
nated axons have a fast sodium current and 
delayed potassium current, which reduces 
the  overlap of the currents and minimizes 
the cost of an action potential (Alle et al., 
2009). Similarly, pyramidal neurons and 
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Two-photon excitation has enabled remark-
able advances in our understanding of the 
nervous system. Its three-dimensional res-
olution, superior depth penetration, and 
minimal phototoxicity for out-of-focus 
portions of the sample have made it the 
technique of choice for an impressive array 
of applications. For all of its advantages, 

however, it is not without its limitations; for 
neuroscience, perhaps chief among these is 
the time it takes to collect a large image over 
a field of view containing many neurons. 
To address this limitation, Nikolenko et al. 
(2008) have provided a new method for 
creating customized two-photon excita-
tion, thereby allowing the user to conduct 
photostimulation or imaging from tens of 
neurons simultaneously.

Conventional two-photon microscopy 
assembles an image by scanning a single 
laser spot over the sample. While there are 
fast-scanning microscopes that can collect 
an entire frame in 1/30 of a second, these 
instruments are hampered by high noise 
levels. The dominant source of noise is 
not the instrument itself: instead, it arises 

from the limited number of photons that 
are collected in each pixel. Reducing the 
noise simply requires more photons—but 
under typical conditions, each illuminated 
fluorophore emits photons at its maximal 
rate, which means that the only way to get 
more photons is to integrate over longer 
times.

Efforts to circumvent this limit have 
mostly taken one of two approaches (see 
Conchello and Lichtman, 2005; Wilt et al., 
2009 for reviews). Some instruments illumi-
nate many pixels simultaneously, satisfying 
the integration time for many pixels in par-
allel. The others carefully choose a restricted 
set of “interesting” pixels, thereby reducing 
the total number of pixels that need to be 
acquired during each scan.

fast- spiking interneurons in the cerebral 
cortex also minimize energy  expenditure 
for the patterns of action potentials 
they generate in vivo (Hasenstaub et al. 
2009). This may be a general principle 
for neural information processing sys-
tems (Laughlin et al., 1998; Laughlin and 
Sejnowski, 2003).
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Nikolenko et al. present an elegant tech-
nique, which they call “SLM microscopy,” 
that combines both of these strategies into 
a single system. Their system targets two-
photon excitation simultaneously to up to 
several tens of points within the field of 
view. The authors achieve this feat using a 
spatial light modulator (SLM), which alters 
the oscillation phase of the incoming light. 
A shift in phase does not in itself alter the 
intensity of the light; however, because of 
constructive and destructive interference, a 
change in phase can lead, upon propagation, 
to a dramatic re-distribution of intensity. 
For example, a microscope objective can 
be thought of as a device that simply adds 
a spatially-varying phase to the incident 
illumination; constructive and destructive 
interference then causes the phenomenon 
that we usually think of as focusing to a 
 diffraction-limited point.

Nikolenko et al. (and related work Lutz 
et al., 2008; Papagiakoumou et al., 2008), 
following in the footsteps of holography 
pioneer Gabor (1948), deliberately perturb 
the phase of the input light to the objec-
tive. The result, of course, is a microscope 
that no longer focuses all the incoming 
light to a single, diffraction-limited spot. 
Ordinarily, this would not be taken as a 
step forward. However, the SLM consists of 
more than a million individually-address-
able elements, and thus allows phase to be 
precisely manipulated in nearly arbitrary 
spatial patterns. The authors employed a 
computational algorithm to calculate a 
phase pattern that, after passage through 
the objective, illuminated many distinct 
spots. Crucially, the position of these spots 

is under the control of the user, and thereby 
allows one to direct light to many specific 
targets, even ones that are above or below 
the  objective’s plane of focus. Rather than 
the usual photomultiplier tube used when 
scanning a  single point, the emitted light 
is focused onto a CCD camera, which pre-
serves spatial information about the emis-
sion source.

Nikolenko et al. demonstrated SLM 
microscopy’s utility with two applica-
tions. The first is photostimuluation with 
caged glutamate. The authors were able to 
simultaneously stimulate multiple spines 
on the same neuron, or multiple neurons 
simultaneously. The high power needed 
for two-photon uncaging currently acts as 
a barrier to selecting more than a modest 
number of spots. Nevertheless, the ability 
to stimulate multiple spots seems likely to 
yield advances in our understanding of both 
single-cell membrane properties and neu-
ronal circuits.

The second application was to image 
activity, via a calcium indicator, simultane-
ously in multiple neurons at speeds rang-
ing from 15-60 Hz. The resulting signals 
were sufficient to clearly detect transients 
due to single action potentials. Several 
methods (reviewed in Ji et al., 2008; Wilt 
et al., 2009) for fast imaging of neuronal 
activity have previously been developed, 
each with their own advantages. A strength 
of SLM microscopy, because it acquires 
several regions in parallel, is its ability to 
achieve relatively low noise levels (at least 
by the standards of some other two-photon 
techniques) from the selected targets, even 
at high speeds.

Over the past few decades, microscopy – 
one of the oldest pillars of science – has 
undergone an extensive era of new devel-
opment. SLM microscopy exploits our bur-
geoning ability to shape light to our needs, 
and is a welcome addition to the overall 
progress in optics and neuroscience.
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Researchers changing scientific fields are 
often surprised to discover how different 
the cultures in their new and old fields are. 
While the neuroscience culture is vibrant 
and stimulating in many ways, neuroscience 
is not a field with the strongest tradition 

for sharing or division of labor. In phys-
ics there has effectively been a division of 
labor between experimentalists and mod-
elers for about 100 years. It was realized 
that it is simply too difficult for a single 
person or a single research group to mas-


