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We explore the use of Physics-Informed Neural Networks (PINNs) for reconstructing full
magnetohydrodynamic solutions from partial samples, mimicking the recreation of space-
time environments around spacecraft observations. We use one-dimensional magneto-
and hydrodynamic benchmarks, namely the Sod, Ryu-Jones, and Brio-Wu shock tubes,
to obtain the plasma state variables along linear trajectories in space-time. These simulated
spacecraft measurements are used as constraining boundary data for a PINN which
incorporates the full set of one-dimensional (magneto) hydrodynamics equations in its loss
function. We find that the PINN is able to reconstruct the full 1D solution of these shock
tubes even in the presence of Gaussian noise. However, our chosen PINN transformer
architecture does not appear to scale well to higher dimensions. Nonetheless, PINNs in
general could turn out to be a promising mechanism for reconstructing simple magnetic
structures and dynamics from satellite observations in geospace.

Keywords: space physics, reconstruction, physics-informed neural network, MHD, computational methods

1 INTRODUCTION

Machine learning techniques for space science have grown popular in recent years, with diverse
applications across the coupled Sun-Earth system. These include coronal holes (Bloch et al., 2020;
Illarionov et al., 2020), solar flare forecasting (Li X. et al., 2020; Wang X. et al., 2020), solar wind
prediction (Upendran et al., 2020), and space weather forecasting (Camporeale (2019) and
references), among other applications. However, most of these applications use general neural
network architectures, such as convolutional neural networks, which utilize large amounts of
observed data for training and discovery. Although solar-disk based missions like the Solar
Dynamics Observatory (Pesnell et al., 2012) are able to provide this abundance of data, other
spacecraft missions (especially in planetary magnetospheres) do not have such an abundance.
Indeed, magnetospheric space-based missions suffer from a sparsity problem: the amount of
information they are able to measure is very tiny relative to the full scale of information present
within the global system.

The usual method of “filling in the blank” for missing magnetospheric information is to perform
computer simulations. If we wish to provide global context, we use large-scale, computationally-
intensive global magnetohydrodyamic simulations of the magnetosphere (e.g., SWMF (Tóth et al.,
2005), GAMERA (Zhang et al., 2019), OpenGCCM (Raeder et al., 2001), Gkeyll (Dong et al., 2019)).
These simulations are typically initialized with solar wind conditions closest to the time of interest,
and then compared directly with the spacecraft observations after run completion. Global
simulations, however, are not sophisticated enough to assimilate spacecraft observations and
determine the most likely magnetosphere dynamics which produced these observations.
Unfortunately, it is often too computationally expensive to run multiple iterations in order to
best fit the data, especially for more advanced simulations which extend beyond ideal MHD.
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There have recently been great strides in using data-mining
methods for this type of reconstruction. Sitnov et al. (2021) fuse
nearest-neighbor regression of historical data with global
magnetic field models in order to reconstruct the full
magnetospheric magnetic field surrounding a particular event.
However, their estimates for the plasma dynamics or the
magnetic field evolution of the system are based on previous
observations, and not do necessarily provide the actual time
evolution of the system. Another example of combining data-
mining and dynamic modeling is Chu et al. (2017), who present a
neural-network-based dynamic electron density model derived
from data across multiple space missions within the inner
magnetosphere. This model is able to reproduce key features
of plasmaspheric evolution during the erosion and refilling cycle,
but it is limited to electron density.

We need a method which simultaneously provides an accurate
fit to observed data but also provides a full, precise reconstruction
of plasma states. We want to fully understand how events arise
and will proceed within the temporal evolution of the
magnetosphere. In order words, we need to be able to
reconstruct the full picture surrounding spacecraft
measurements, in both space and time.

In this paper, we explore the use of Physics-Informed Neural
Networks (PINNs) for reconstructing information from
simulated spacecraft measurements within one-dimensional
hydrodynamic (HD) and magnetohydrodynamic (MHD)
benchmark problems. Recently, there has been much interest
in the literature about using multi-layer perceptron networks as a
mesh-free method to solve partial differential equations (PDEs) at
given time snapshots, akin to a least-squares finite element
method. These results (e.g., Sirignano and Spiliopoulos (2018);
Raissi et al. (2019); Michoski et al. (2020); Wang S. et al. (2020); Li
Z. et al. (2020)) demonstrate the remarkable potential of utilizing
PINNs to determine the solution to a PDE at an arbitrary time t
given an initial (t � 0) and boundary conditions. The PINNs are
able to incorporate the PDE behavior into their loss function, and
train the model such that the output is constrained to follow this
equation-defined behavior. Indeed, some authors have even
begun to explore how PINNs can supplement rather than
replace traditional linear solvers (Markidis, 2021). While this
is a great success, much is still unknown about how well this
framework scales up to more complicated situations, especially
from scalar functions (like Burgers’ equation) to vector
conservation laws (like the system of MHD equations). This is
especially important in the context of spacecraft data
reconstruction, which are often interpreted using some variety
of MHD. We would eventually like to know whether or not it is
possible to use one-dimensional plasma data to precisely
reconstruct two- or even three-dimensional structures and
environments. Although it is reasonable to assume that 1D
spatio-temporal data can be used to reconstruct a 2D (1 space
+ 1 time) domain, it is unknown how well 1D data can apply to 3-
or even 4D space-time domains.

Here, we begin this investigation by adapting a PINNmodel to
our hypothetical (M)HD spacecraft scenario. Instead of
specifying the solution at the edges of the space-time domain,
we sample linear trajectories of data throughout the full domain.

The observations provide a data matrix �D � [U1,U2, . . . ,Un] for
(M)HD state variables U at each sampled point (xn, tn) within the
space-time domain. �D provides the boundary constraint for our
PINN, while we constrain the output via a loss-function which
incorporates the (M)HD equations. The resulting solutions are
then consistent with both the (M)HD equations and the
spacecraft data. We note that we are not attempting to solve
the underlying (M)HD equations in the same manner as more
traditional computer simulations; instead, we are adapting PINN-
based PDE solver techniques to our reconstructions. Similar
physics-based reconstruction efforts (not using PINNs) have
been applied for flux ropes and flux transfer events (Slavin
et al., 2003; Sonnerup et al., 2004; DiBraccio et al., 2015),
magnetopause structures (Hasegawa et al., 2006; Chen and
Hau, 2018) and reconnection (Teh and Ã-. Sonnerup, 2008),
and coronal mass ejections (Nieves-Chinchilla et al., 2018).

The paper is presented as follows: Section 2 provides an
overview of the PINN reconstruction method, including the
architecture (Figure 1) and loss function composition;
Sections 3.1–3.3 detail our experience and results with the
(M)HD reconstruction; and we provide a brief discussion
about extension to multiple dimensions in Section 4.

2 NEURAL NETWORK RECONSTRUCTION
METHOD

Following Raissi et al. (2019), we create a physics-informed neural
network (PINN) in order to find a solution Unet (θ; x, t) which
follows both a physical constraint

fnet d
zUnet

zt
+ zF(Unet)

zx
� 0 (1)

and a boundary data constraint

Unet(xi, ti) � U(xi, ti), i � 1 . . .Nb (2)

for Nb coordinates of (xi, ti) in a space-time domain. In our
application,U � (ρ, vx, vy, vz, P, Bx, By, Bz) is theMHD state vector,
F is the one-dimensional MHD fluxes and θ represents the
parameters of the neural network Unet. The parameters θ of
the PINN can be learned by minimizing the mean squared error
loss MSE � Lb + λLf, where

Lb � 1
Nb

∑
Nb

i�1
‖U(xi, ti) − Unet(xi, ti)‖2 (3)

is the boundary data loss and

Lf � 1
Nc

∑
Nc

c�1
∑
Nq

q�1
‖fq,net(xc, tc)‖2 (4)

is the physical constraint loss. λ is the tradeoff parameter which
balances the different scales between the data and physics losses.
In our experiments, we found that setting λ � 1 was sufficient;
however, we note that there are methods to find a more
appropriate value for λ, e.g., grid search or other
hyperparameter optimization techniques. We use the ADAM
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optimizer (Kingma and Ba, 2014) for the minimization with an
initial learning rate of 1 × 10–3 and epsilon set to 1 × 10–4. We
note that, although we did not use them in this paper, higher
order optimizers, such as L-BFGS-B (Zhu et al., 1997), are likely
to be necessary for more complicated reconstructions. Indeed,
Markidis (2021) (using DeepXDE: (Lu et al., 2021)) demonstrate
that using ADAM and then L-BFGS-B produces higher quality
solutions than ADAM alone.

Nq here represents the total number of physical equations
which constrain the PINN output (see Section 2.2; Nq � 9 for 1D
MHD). (xc, tc) represent so-called “collocation points” (c.f. Raissi
et al. (2019)); these points, distributed throughout the
reconstruction domain, are where the physics residuals (Eq. 4)
are evaluated during the training process. Nc denotes the number
of collocation points used in the loss calculation during each step.
For each of the individual equations, the associated loss term is
created by evaluating the time and spatial derivative of each state
variable with respect to the input collocation point. Minimizing
the residual to zero for each of the physics loss terms is identical to
having the PINN output satisfy the set of equations over the full
domain. It is not enough to simply fit the data and hope the
output extrapolates well to the rest of the region; forcing the
learning to account for the physics residuals allows the
reconstruction to capture the intended structure.

In order to appropriately cover the reconstruction domain, we
generate collocation points using Latin Hypercube sampling
(Iman et al., 1981); we use a implementation based on the
library function pydoe2.lhs (Sjögren et al., 2018). This
sampling method allows for a relatively even spread of points
throughout the domain. We repeat this sampling for each
training step; frequently randomizing the collocation points
allows for a fuller coverage of space-time throughout training.
Collocation point densities reported in this paper follow the
format N2, where N is the number of evenly-distributed spaces
along each of the space and time dimensions; the hypercube
sampling generates one randomly selected point in each of the N2

boxes whichmake up the full sampling grid.We note that we have
not attempted any sort of refinement of collocation point
coverage, e.g., adding a higher density of points around
steeper gradients (Lu et al., 2021).

At first, we used automatic differentiation (AD; see, e.g.,
history and review in Baydin et al. (2018)) to get the
derivatives of the output U state vector with respect to the
input (x, t) collocation points (as in Eq. 1). It is essential to
get the individual derivatives since we wish for the individual
equations to be satisfied independently, i.e., fq,net � 0 for all q.
However, we found that typical AD algorithms (including those
in tensorflow) calculate the sum of the derivatives of the input
matrix, since they use matrix-vector products. Thus, in order to
get individual derivatives, we have to run the AD algorithm once
per variable (8 evaluations for MHD). Otherwise, we end up with
a sum of all the derivatives (i.e., zρ/zx + zvx/zx + . . . for MHD).

As a result, we found that it was faster to use the network
output to approximate the gradient at the collocation points. To
do this, we use the central difference formula zU/zx ≈ [U (x + Δx)
− U(x −Δx)]/2Δx (and similar for zU/zt). For a given set of
collocation points (xi, ti), we make four forward passes through

the network for U(xi ±Δx, ti) and U(xi, ti ±Δt); these values are
used to calculate the spatial and temporal derivatives according to
the above formulae. The MHD equations (Section 2.2) also
require knowing the values of U at the collocation point, so
another forward pass is required to get U(xi, ti). These five
forward passes provide all the relevant information necessary
to evaluate the residuals for MHD (Lf ; Eq. 4). We arbitrarily
define Δx � Δt � 0.001; there is no effect on runtime for different
values since the forward pass does not depend on Δx or Δt.
However, the choice must be sufficient to accurately resolve the
physical structures present. Although we use numerical
differentiation to calculate the MHD residuals Lf, we still use
automatic differentiation to calculate the overall loss gradient
with respect to the PINN parameters θ.

We note that the boundary conditions U(xi, ti) do not
necessarily need to be defined in the traditional sense, i.e., on
fixed exterior edges within the space-time domain. These would
be defined at all x at t � 0 and/or for all t at particular x edges, e.g.,
x � xL and x � xR. Since we are imitating spacecraft data sampling,
our boundary conditions cut across the x − t domain (e.g., black
trajectory lines in Figure 2) and we do not specify edge behavior.

2.1 Architecture
Recent studies in PINNs (e.g., Wang S. et al. (2020) and references
thereof) are unclear as to the best approach for solving PDEs:
most rely on the capacity of over-parameterized networks in
order to reconstruct the appropriate solution of a given PDE.
After experimenting with several types of fully-connected layers,
including a multi-layer perceptron (Raissi et al., 2019), we found
that the fully-connected transformer network presented in Wang
S. et al. (2020) was the quickest to train and best reproduced the
complex solutions to the benchmarks in this paper. We note that
this does not necessarily mean that our choice of architecture is
the best for PINNs in general. Indeed, we had difficulty adapting
this network to higher dimensional reconstructions (see
discussion in Section 4.1), which suggests that other kinds of
architectures need to be explored in future work.

This transformer neural network architecture is designed to
take advantage of residual connections within the hidden layers
and multiplicative interactions between the input dimensions:

Ut � ϕ(XW1 + B1); Vt � ϕ(XW2 + B2) (5)

H(1) � ϕ(XWz,1 + Bz,1) (6)

Zk � ϕ(HkWz,k + Bz,k) (7)

Hk+1 � (1 − Zk)ʘUt + Z k ʘVt (8)

fθ(X) � HL+1W + B, (9)

where k � 1 . . . L is the nth layer of the network, L is the number
of layers, X is the (n, d) input matrix of data points, ϕ is the
activation function, W and B are the weights and biases for each
layer, and ʘ denotes element-wise multiplication. The input array
X is an array of positions (x,t) in space-time and the output is the
plasma state vector U � (ρ, vx, vy, vz, P, Bx, By, Bz). For the space-
time reconstructions in this paper, d � 2.

Although Wang et al. (2020a) used fixed hyperbolic tangent
(tanh) activation functions, we found that using trainable tanh
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functions (e.g., Chen and Chang (1996); Jagtap et al. (2020))
delivered a more accurate reconstruction, i.e.,:

ϕ(x) � tanh βx (10)

with β being an additional trainable parameter within each node
of a hidden layer. We do not believe there is anything special
about the trainable tanh functions that make it well suited for our
particular class of problems; the added parameters simply allow
for a greater flexibility in representing the final solution. We note
that Markidis (2021) found that trainable sigmoid activation
functions may work better for discontinuous source terms
than trainable tanh activation functions. In general, we found
that using these trainable activation functions reduced the
number of steps needed for training. We refer the reader to,
e.g., Apicella et al. (2020) for a survey on trainable activation
functions.

Finally, our implementation environment was run on a Dell
Latitude E7450 with a Intel Core i7-5600 CPU @ 2.6 GHz using
Windows Subsystem for Linux. We used the tensorflow library v.
2.3.1 (Abadi et al., 2015) and python version 3.6.9. We note that

the default variable dtype in tensorflow is float64, but we set the
dtype in our program to float32.

Tensorflow allows GPU acceleration, but we did not
experiment with this. The anticipated speedup of using a GPU
would be at least 3-6x, depending on the type of GPU used.

2.2 Loss Function From Physics Constraints
We use the one-dimensional MHD equations in the derivation of
our PINN physical constraint loss (Eq. 4). We use the primitive
formulation along x assuming z/zy � z/zz � 0:

zρ

zt
+ vx

zρ

zx
+ ρ

zvx
zx

� 0 (11)

ρ
zvx
zt

+ ρvx
zvx
zx

+ zP
zx

+ By
zBy

zx
+ Bz

zBz

zx
− ρ]

z2vx
zx2

� 0 (12)

ρ
zvy
zt

+ ρvx
zvy
zx

− Bx
zBy

zx
� 0 (13)

ρ
zvz
zt

+ ρvx
zvz
zx

− Bx
zBz

zx
� 0 (14)

FIGURE 1 | Cartoon of PINN transformer architecture described in Eqs. 5–9 for an example two-layer network (L � 2), going left to right. The yellow boxes denote
fully-connected linear layers with trainable tanh activation functions. The blue spheres denote elementwise operations (ʘ and +) on their inputs.

FIGURE 2 | (A): Snapshot of Sod shocktube density at t � 0.2. (B): Full space-time picture of density; white line indicates t � 0.2; black lines represent trajectories of
data sampling for neural network boundary fits.
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zP
zt

+ cP
zvx
zx

+ vx
zP
zx

� 0 (15)

zBx

zt
� 0 (16)

zBy

zt
+ vx

zBy

zx
+ By

zvx
zx

− Bx
zvy
zx

� 0 (17)

zBz

zt
+ vx

zBz

zx
+ Bz

zvx
zx

− Bx
zvz
zx

� 0, (18)

where we have simplified whenever possible using the 1D
divergence constraint zBx

zx � 0. Each of these Eqs. 11–18 as well
as the divergence constraint constitutes one term in the loss
function (Nq � 9). Following Michoski et al. (2020), we add a
viscosity term (]) to the vx equation in order to ease issues with
reconstructing shock fronts and discontinuities. We generally use
] � 0.005, unless otherwise stated.

We have used the primitive variables here as opposed to the
conservative variables (momentum and energy); this allows the
PINN to avoid potential issues with calculating negative pressures
from a conserved energy variable.

Each of the individual Eqs. 11–18 as well as the divergence
constraint contributes a term to the overall loss function (Eq. 4).
Since these equations are written in conservative form, we can
simply calculate the time and space derivatives and sum them,
e.g., for density:

f1,netd
zρnet
zt

+ vx,net
zρnet
zx

+ ρnet
zvx,net
zx

(19)

where ρnet and vx,net are taken from the PINN-generated output
vector Unet, and the derivatives are calculated numerically (as
explained in Section 2).

Similarly, the hydrodynamic equation loss function is derived
by setting B � 0 and removing the magnetic-related terms from
the neural network output and loss function. For our
hydrodynamic test problem (Section 3.1), we also ignore the
vy and vz terms, yielding a loss function comprising of three
equations (ρ, vx, P).

3 RESULTS

3.1 Sod Shock Tube
The Sod shock tube (Sod, 1978) is a well-known one-dimensional
hydrodynamic benchmark, the solution of which comprises both
shock and rarefaction waves. As such, it is an excellent problem to
test the neural network reconstruction of hydrodynamic
structures and waves. For the base simulation, we use a pre-
existing GPU simulation code designed for solving MHD
equations (Bard and Dorelli, 2014, Bard and Dorelli, 2018)
and set up the Sod problem as follows:

ρL � 1.0; ρR � 0.125
vL � vR � 0.0
PL � 1.0; PR � 0.1,

with a grid 0 < x < 1 and a resolution Δx � 1/8,192. The L-state
was defined on 0 < x < 0.5; the R state covered 0.5 ≤ x < 1. The

simulation was run until t � 0.25t0, writing output every Δt �
0.001t0; this provided a base space-time grid of 8,192 × 250
points, each with a state vector Ueuler � (ρ, v, P), for comparison
with the final neural network output.

Figure 2 illustrates the overall space-time structure for the
density with a sample cut showing a 1D structure snapshot. Data
was sampled along four parallel trajectories (black lines in
Figure 2) and fed into the PINN as a boundary condition.
Each trajectory consisted of 75 points, meaning that the
boundary condition provided 300 measurements compared to
the more than 2.04 million points within the overall space-time
simulation grid that we saved to file.

We note that the base simulation did not need to be so highly
spatially resolved; however, we did not save all of the time
snapshots required to progress the simulation to t � 0.25. If
we had saved the output from every time step, the full space-time
dimensions would have roughly been 8,192 × 11,800 (Δt ≈ 2.12 ×
10–5 as per the CFL wave stability condition). Even a more
modestly resolved simulation, e.g., nx � 512 (Δt ≈ 3.4 × 10–4)
would have full space-time dimensions of roughly 512 × 740, or
about 380,000 points. Thus, the 300 points comprising the PINN
boundary conditions is rather sparse compared to the overall
amount of information contained within the full simulation
domain. Even the collocation points, although more densely
sampled, are still relatively sparse. The maximum number we
reach for the Sod reconstruction is 852 � 7,225 points; the average
spatial resolution between collocation points then is Δx ≈ 1/85
and the average time resolution is Δt ≈ 0.25/85 ≈ 2.9 × 10–3.

There is no special reason for the trajectories to be parallel. We
chose these to emulate the near-parallel spacecraft trajectories of
constellation missions within local environments (e.g., the
Magnetosphere Multiscale Mission (Burch et al., 2016) or a
potential Geospace Dynamics Constellation mission (Jaynes
et al., 2019)). Generally, when spacecraft measure plasma
structures, it is usually the plasma that is moving much faster
than the spacecraft in a solar or geospace frame of reference.
Assuming a fixed plasma velocity, it is possible to translate to the
plasma frame of reference; the spacecraft motions within this
frame will appear as straight lines (e.g., Sonnerup et al. (2004)).
We note that any contiguous (or non-contiguous) sample of data
points should work with the PINN reconstruction. (See
Section 3.2 for an example with non-parallel trajectories.).

More information via additional trajectories could also be
provided to ensure a stronger reconstruction fit. However, our
goal was to try to reproduce the simulation space-time given
sparse data.

The PINN was initialized with 4 layers of 16 nodes each,
following the architecture presented in Section 2.1. After some
experimentation with training methodologies, we found that a
learning rate schedule (e.g., Bottou (2010); Bengio (2012)) and
randomization of collocation points worked very well. We first
increased the density of collocation points and then decreased the
learning rate upon reaching a maximum number of collocation
points. We started with (N � 20)2 collocation points as a “warm-
up” period for the network to start fitting the boundary data, and
then increased the collocation point density to (N + 5)2 every
22,500 training epochs to a maximum of 852 points. When the
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maximum was reached, we decreased the learning rate by a factor
of 2/3 until it fell below 4 × 10–4 (from a start of 1 × 10–3). Finally,
we randomly generated a new sample of N2 collocation points
after each training step. After following this training schedule, the
program terminates. The final training epoch count was about
280,000, taking about 3 h to run on our CPU. We could continue
training by increasing the collocation point density; however, this
would require a more significant time investment.

We note that the stochastic nature of neural network training
means that no two PINNs will be the same, even if trained with
the same loss function on the same boundary data. Despite this,
we find that PINNs with the same architecture and training
schedule will generally cluster around the same final
reconstruction accuracy.

We plot the PINN relative error ‖(ρnet − ρ)/ρ‖ in Figure 3. We
note that the regions near the boundary trajectories are fit well,

though the PINN struggles with discontinuities and shocks.
Indeed, the highest error within the reconstructed regions is
found immediately around the shock waves (Figure 3).
Although the original MHD simulation does not have a
viscosity term, adding ] to the shock parallel velocity equation
(here vx; Eq. 12) improves the fit around these abrupt gradients
(corroborating Michoski et al. (2020)). This is illustrated in
Figure 4; the viscosity term allows the PINN to more
smoothly trace the discontinuities. This does add an artificial
shock thickness in the reconstruction (lower left plot of Figure 5);
this is the chief cause of the relative errors surrounding the shocks
(Figure 3).

Setting the viscosity too high does actively hurts the fitting in
both smooth and discontinuous regions, and should be avoided.
This could potentially be alleviated by, e.g., adaptive distribution
of collocation points (Lu et al., 2021) by clustering them along

FIGURE 3 | (A): Density Relative Error ‖(ρnet − ρ)/ρ‖ for a PINN trained with four sampled trajectories (dotted lines) on the Sod shock tube. The greatest error is along
the shock wave (second from right); the PINN does not handle abrupt gradients well. (B): Same, but for case of a PINN trained on one sampled trajectory. The PINN
struggles to recover the solution further away from the boundary data.

FIGURE 4 |Comparison of exact values with PINN-generated predictions for ρ at t � 0.2, for different values of the viscosity term. (A): The default setting ] � 0.005.
(B, C): Same, for ] � 0, 0.05. Adding a viscosity term helps the PINN generate a better fit than without, though adding too much viscosity leads to very diffusive
discontinuities and a poorer fit. Without the viscosity term, the PINN struggles to resolve the shock discontinuities. All PINNs in this example were trained with the same
architecture and learning schedule and for the same number of epochs, using the four-spacecraft trajectory data.
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steeper gradients (akin to adaptive mesh refinement in multi-
scale plasma simulations). We note that there is no magic number
for the viscosity parameter; ] � 0.005 works well here, though
other similar values may give slightly better or worse results.

Since we arbitrarily chose four trajectories for the boundary
data, we repeat this experiment for a single trajectory, using the
same network and learning schedule as described above. In this
case, the one-spacecraft PINN has a similar ability to reconstruct
the domain and a similar issue with reconstruction around the
shock wave. However, it has higher error in regions where it
“lacks coverage”, especially in the downshock region (right
portion of Figure 3; plot entitled “One Trajectory”).
Interestingly, the error is lower where the single trajectory
crosses the shock at a late time, but higher at an earlier time
where there is less constraining information on the downshock
side (lower right of Figure 5). The shock wave essentially acts as a
barrier to information from upstream and makes it difficult for

the PINN to constrain its reconstruction. This makes sense
physically, since acoustic waves which carry information
cannot travel faster than shock waves. Indeed, at t � 0.05
(Figure 5), the one-spacecraft reconstruction has difficulties
with recreating the appropriate shock location and
downshock state.

Ultimately, adding additional boundary data to the network
training helps the PINN better constrain the solution output,
especially in low-sampled areas. This raises several interesting
questions: How much data is necessary for a PINN to accurately
reconstruct the true environment, and how far out (in space and
time) from the observed data can the PINN output be reasonably
trusted? These have implications for, e.g., reconstructions of
environments or magnetic structures around spacecraft
observations (e.g., flux ropes (Slavin et al., 2003; Hasegawa
et al., 2006; DiBraccio et al., 2015) and coronal mass ejections
(Nieves-Chinchilla et al., 2018; dos Santos et al., 2020)).

FIGURE 5 | Comparison of exact simulation values with PINN-generated predictions for ρ at t � 0.2 (A) and t � 0.05 (B). The left column presents the four-
spacecraft PINN fit, while the right column presents the one-spacecraft PINN fit. The PINN reconstruction tends to smooth out discontinuities and sudden gradients; this
is due to adding the viscosity term (though this is still better than having no viscosity term). Additionally, the reconstruction has issues with regions further away from
boundary data (lower right plot for x > 0.5; c.f. Figure 3).
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Finally, we note that the PINN inference time is faster than
using our GPU-based solver, though there are some caveats. For a
single time snapshot, generating a full resolution 8,192 × 1 output
took about 10 ms; we do not need to solve for prior times to get
the solution at any given time. The full 8,192 × 250 space-time
grid took about 9–10 s, compared to the original simulation time
(on one NVIDIAM2090 GPU) of ≈ 40 s (including file I/O). (We
note that a less resolved simulation with nx � 512 would have a
runtime of several seconds.) However, this trained neural
network is only effective for reconstructing this specific Sod
shock tube within the given space-time extent. It is not
generalizable to other shock tubes nor outside the
reconstructed domain; the neural network has to be retrained
for each new application.

3.2 Ryu-Jones Shock Tube
For a more complex reconstruction, we reproduce two MHD
shock tubes: Ryu-Jones (Ryu and Jones, 1995) and Brio-Wu (Brio
and Wu, 1988) (see Section 3.3). First, following (Ryu and Jones,
1995) (their problem 4a; henceforth referred to as RJ4a), we
initialize a simple benchmark designed to test so-called “switch-
on” fast shocks; the shock tube also contains several other
structures. We chose the RJ4a tube as an intermediate step up
to the canonical Brio-Wu shock tube (Section 3.3) since it is a less
severe shock discontinuity.

The initial condition is

ρL � 1.0; ρR � 0.2
vx � vy � vz � 0
PL � 1.0; PR � 0.1
By,L � 1.0; By,R � 0.
Bx � 1.; Bz � 0.

The simulation was run until t � 0.18 with an output every
Δt � 0.002; the final space-time output was represented on a 4,096
× 91 grid, each point having a full MHD state vector U � (ρ, v, P,
B). As part of the spacecraft sampling, we define four non-parallel

trajectories (dotted lines in Figure 6; left subfigure) and collect
the plasma state data U along these tracks. Again, this is
arbitrarily defined; the intent is to demonstrate that non-
parallel trajectories can be used here.

For the MHD reconstruction, we keep the same network
architecture as defined above (Section 2.1); however we adjust
the number of output dimensions from 3 to 8 to reflect the full
MHD state vector. Additionally, we use the full MHD loss
function defined in Section 2.2. Since the reconstruction is
more complex and involves more output terms and losses, the
network is harder to train.

As there are roughly triple the output dimensions, we naively
increase the number of nodes in each layer from 16 to 48, keeping
the number of layers at 4. We also adopt a slightly different
training schedule than the Sod case in Section 3.1: we start with a
warm-up density of 202 collocation points for 15,000 steps, and
then set the density to 302 and increase to (N + 7)2 every 24,000
steps, ending at a maximum of 722 points. Upon reaching the
maximum, the learning rate was decreased by a factor of 3/4 every
24,000 steps until a minimum of 2 × 10–4 was reached. We chose
722 since the time range for the RJ4a tube is until t � 0.18 (Sod was
until t � 0.25); 852*(0.18/0.25) ≈ 722. Thus, the amount of time
resolution for the collocation point distribution (Δt/N) is roughly
the same for both the Rj4a and Sod reconstruction examples. The
final number of steps was about 280,000, and the training time
took about 8 h (alternatively: a few hours if we had used a GPU).
Again, as in the Sod case, we could continue training at a higher
density of collocation points at the expense of additional
training time.

We are able to get similar results as the Sod shock tube: the
neural network is able to reconstruct the solution space-time,
albeit with issues in recreating the step discontinuity at the initial
condition (t � 0) and with diffusion around the shock
discontinuity. Figure 6 summarizes our results for the ρ
reconstruction of the RJ4a tube, with similar results for the
other reconstructed variables.

FIGURE 6 | (A): Density Relative Error ‖(ρnet − ρ)/ρ‖ for a PINN trained with four sampled trajectories (dotted lines) on the Ryu-Jones shock tube. The greatest error is
along the shock wave (second from right); the PINN does not handle abrupt gradients well. (B,C): Exact (black) and NN-generated values (red) for ρ at t � 0.2 (top)
and t � 0.05 (bottom). The PINN is able to reconstruct the state, but still has issues with sharp gradients.
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3.3 Brio-Wu Shock Tube
The final case we study, the Brio-Wu shock tube, is a well-known
magnetohydrodynamic benchmark and one of the most-used
MHD analogues to the Sod shock tube. It is the most difficult of
our examples to train for, since it has the steepest shock
discontinuity. The initial condition (Brio and Wu, 1988) is:

ρL � 1.0; ρR � 0.125
vx � vy � vz � 0
PL � 1.0; PR � 0.1
By,L � 1.0; By,R � −1.0
Bx � 0.75; Bz � 0.

The reference dataset was created using the MHD code on a grid
of 4,096 points, over a total time of t � 0.248 t0 with an output
every Δt � 0.02. This results in a space-time grid of 4,096 × 125
points. We use a similar training schedule as the RJ4a case
(Section 3.2), with the exception of setting the maximum
collocation point density to 852. The final number of training
steps was 303,000; the training time was about 9–10 h (on CPU).

We find that the Brio-Wu shock tube is a more difficult
reconstruction, especially in the shock region (Figure 7 Since
we used the same architecture as the RJ4a case, part of this
difficulty arises from the steeper discontinuity within the shock
tube; it is harder to fit this slope with the smooth PINN output.
Brief experimentation suggests that increasing the number of
parameters in the network via adding more layers and/or nodes
helps with a better fit; however, this also increases the training
time. Alternatively, we find that increasing the viscosity to ] �
0.01 may allow the PINN to better approximate the steep
discontinuity within the tube. However, as Figure 8 shows,
there is not a straightforward relationship between an accurate
reconstruction and choice of viscosity for each variable. Although
increasing viscosity helped with the velocity reconstruction
within the shock, it came at some loss of accuracy within the
density reconstruction. In both cases, increasing viscosity
provided a slightly less accurate reconstruction within the

smooth regions. Ultimately, the key to a more accurate
reconstruction with the PINN-based technique is simply to
add more constraining data; the highest errors are consistently
within the regions furthest away from the trajectories and on the
other sides of shocks.

For a more direct application to spacecraft data
reconstruction, we repeat the above Brio-Wu experiment with
noisy trajectory data. We use the same PINN architecture and
training schedule, and use ] � 0.01. The trajectory data is
modified with Gaussian noise, randomly chosen from a
distribution with a mean of 0 and a standard deviation of 0.1.
For density and pressure, which are constrained to be positive, we
set the data to aminimum of 0 where the added noise would cause
negative values. Examples of noised trajectory data are shown in
Figure 9.

Despite the noise, the PINN is still able to reconstruct well the
plasma space-time state (Figures 10–12), which bodes well for
actual spacecraft data. We note that since the PINN loss function
is trained on the MSE (proportional to the absolute loss), the
reconstruction has a consistent level of absolute error through the
space-time (except near discontinuities and domain edges). This,
however, does mean that the reconstruction has similar absolute
errors in both high- and low-magnitude regions, leading to a
disparity in relative error between the two regions (Figures
10–12). Future work will be needed to investigate loss
functions and/or training strategies such that there is a
consistent level of relative error throughout the domain.

4 DISCUSSION AND CONCLUSION

4.1 Extension to Higher Dimensions
With the success of reconstructing the 1D MHD Brio-Wu test
problem, we attempted to extend this method to a two-
dimensional test problem. It was very easy to modify our
architecture for 2D space + 1D time reconstruction: simply
extend the loss function to include additional derivatives and

FIGURE 7 | (A): Density Relative Error ‖(ρnet − ρ)/ρ‖ for a PINN trained with four sampled trajectories (dotted lines) on the Brio-Wu shock tube. The greatest error is
along the shock waves (on right side) and in the lower-right corner furthest from the sample trajectories. (B,C): Exact (black) and NN-generated values (red) for ρ at t � 0.2
(top) and t � 0.05 (bottom). The PINN is able to reconstruct the state, but still has issues around shocks.
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modify the collocation point generator for three dimensions.
However, we quickly found out that this training methodology
did not scale well to higher dimensions.

Extending the collocation point strategy from 2 to 3
dimensions, while straightforward, meant that the
computational intensity increased by many orders of
magnitude. Sampling a similarly-sized space-time with the
same density of points means that the total number of
collocation points increases from N2 to N3, where N is the
number of points sampling across one particular dimension.
In general, D dimensions of space-time require ND collocation
points.

Since the Brio-Wu test case ended with 852 collocation points,
achieving a similar resolution in our 2D test case means we must
use 853 collocation points. If instead, we used a similar number of
collocation points, we would be using ≈ 193 collocation points.
The collocation density would be reduced by a factor of about 4.5
in each dimension, and 90x overall! This is not nearly enough to
get a reasonable solution in 3D space-time. Essentially, in the
absence of ever-faster computer processing (e.g., multiple GPUs),
the trade-off is between a significant increase in reconstruction
time or a large decrease in reconstruction accuracy. Furthermore,
the amount of reconstruction required increases with additional
dimensions; more specifically, the relative amount of input data
significantly decreases compared to the overall space-time
information. We could add more sampled data from the
baseline simulation to help with this issue, but, in the real

FIGURE 8 | (A):Density Relative Error ‖(ρnet − ρ)/ρ‖ for two PINNs (Left: ] � 0.01;Right: ] � 0.05) trained with four sampled trajectories (dotted lines) on the Brio-Wu
shock tube. (B): Velocity Absolute Error ‖vx,net − vx‖ for the same PINNs as above. Both PINNs were trained with the same architecture and training schedule.

FIGURE 9 | Sampled ρ data for each of the four trajectories across the
Brio-Wu space-time domain, plotted as a function of X coordinate. The
red line is the same data with Gaussian noise added (mean � 0, standard
deviation � 0.1).
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FIGURE 10 | Same as Figure 7, except with ] � 0.01 andwith randomGaussian noise added to the data (c.f. Figure 9). The Density absolute error ‖ρnet − ρ‖ is also
plotted. Despite the noise, the PINN obtains a similar reconstruction as the noiseless state, with similar issues around shocks and further from the constraining data.
Although the relative error is higher on the right side of the shock, the absolute error is of the same order on either side of the reconstruction. Since the PINN loss function
uses MSE, it minimizes the absolute error without regard to the relative magnitude difference of the actual value.

FIGURE 11 | Same as Figure 10, except plotting both the By absolute error ‖By,net − By‖ and the By relative error ‖(By,net − By)/By‖, and By at selected times.
Random Gaussian noise (c.f. Figure 9) has been added to the data.

FIGURE 12 | Same as Figure 11, except for Pressure. Random Gaussian noise (c.f. Figure 9) has been added to the data.
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magnetosphere, we often do not have the ability to add more
spacecraft data within the local environment.

Ultimately, although this collocation point strategy does not
scale well in training, we believe that it will still work to reconstruct
multiple spatial and time dimensions (provided a large enough
computational capability and sufficient boundary information).
However, since networks are only trained on a single event, we are
skeptical that reusing trained networks for different kinds of events
will be viable. This transformer network + collocation point approach
does not seem to be the best option for replacing global simulations in
extracting the full temporal and spatial global environment
information from satellite observations. But, this technique may
work well for reconstructing simpler cases at smaller scales, e.g.,
equilibrium or force-free flux ropes (Slavin et al., 2003; DiBraccio
et al., 2015), current sheets (Hasegawa et al., 2019), magnetopause
structures (Hasegawa et al., 2006; Chen and Hau, 2018), coronal mass
ejections (e.g., dos Santos et al. (2020)), or other geospace magnetic
structures.

4.2 Conclusion
We have presented a physics-informed, fully-connected
transformer neural network based on Raissi et al. (2019);
Wang S. et al. (2020) which is capable of reconstructing (M)
HD space-time plasma states from simulated spacecraft
measurements in one spatial dimension. This reconstruction works
well even in the presence of noise. We concur with Michoski et al.
(2020) that the PINN has difficulties around discontinuities, like
shocks, and that adding a viscosity term helps with the
reconstruction in these regions. Although the PINN output has a
generally consistent absolute error, this leads to a disparity of relative
error between domains of high and low magnitudes.

The combination of a transformer-based architecture and the
collocation point method works well, but it does take more time to
train the network tofind the reconstructed solution than to simulate the
solution in the first place. We conclude that future implementations of
PINN-based reconstruction techniques must take full advantage of
GPUs for speedup. Additionally, higher-order loss optimizers, like
L-BFGS-B, should be utilized when possible, as they increase
training accuracy (Markidis, 2021). Ultimately, alternative network
architectures and training strategies need to be explored to
maximize reconstruction efficiency and accuracy.

We believe that PINN reconstruction will work in general for
spacecraft data; however, there are still some significant questions
concerning uncertainty. We were able to iterate the architecture
and the training process over the course of this work, but this was
because we had known underlying data. How can we do this in
the presence of an unknown baseline? How do we quantify the
uncertainty of the reconstruction, especially in space
environments and with noisy data?

Other interesting questions to explore are how much data is
necessary for a reliable reconstruction, and how much error due
to noise or instrument mis-calibration can be tolerated?Will one-
dimensional spatio-temporal data samples provide sufficient
information for the reconstruction of a three-spatial + one-
time dimensional reconstruction?

How far out from the spacecraft sampling are we able to go
before the PINN starts making up realities that still fit the

underlying physics equation? This is an issue, especially in
regions where shocks are common. Unless the data
transects the discontinuity, the PINN does not have the
information to reconstruct the other side of the shock. We see this
in the scenarios of Figures 3, 8, where the reconstruction suffers near
the shock discontinuity. This can be alleviated by adding more
constraining data, though this is not always possible. Future
investigations on PINN error and convergence for solutions of
PDEs are needed. Mishra and Molinaro (2020) is one such
example: they have looked at PINN errors for solutions to several
problems, including the heat, wave, and Stokes equations.

Finally, with the advent of constellation spacecraft missions
like MMS (Burch et al., 2016) and GDC (Jaynes et al., 2019), we
can use these multi-point spacecraft observations for more detailed
reconstructions of plasma andmagnetic field structures, as some have
already started doing with MHD equilibriums and current sheets
(Hasegawa et al., 2006, 2019). Will PINN-based techniques be an
upgrade over these methods? Indeed, Chu et al. (2017); Sitnov et al.
(2021) have already started doing versions of this by combining
magnetometer data across many spacecraft missions, and utilizing
neural-network based methods for the analysis. Fusing data with
advanced models will be an exciting avenue of research for space
physics in the next decade.
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