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The probability of an event’s occurrence affects event-related potentials (ERPs) on

electroencephalograms. The relation between probability and potentials has been

discussed by using a quantity called surprise that represents the self-information that

humans receive from the event. Previous studies have estimated surprise based on the

probability distribution in a stationary state. Our hypothesis is that state transitions also

play an important role in the estimation of surprise. In this study, we compare the effects of

surprise on the ERPs based on two models that generate an event sequence: a model

of a stationary state and a model with state transitions. To compare these effects, we

generate the event sequences with Markov chains to avoid a situation that the state

transition probability converges with the stationary probability by the accumulation of the

event observations. Our trial-by-trial model-based analysis showed that the stationary

probability better explains the P3b component and the state transition probability better

explains the P3a component. The effect on P3a suggests that the internal model,

which is constantly and automatically generated by the human brain to estimate the

probability distribution of the events, approximates the model with state transitions

because Bayesian surprise, which represents the degree of updating of the internal

model, is highly reflected in P3a. The global effect reflected in P3b, however, may not

be related to the internal model because P3b depends on the stationary probability

distribution. The results suggest that an internal model can represent state transitions

and the global effect is generated by a different mechanism than the one for forming the

internal model.

Keywords: Event-Related Potentials (ERPs), Electroencephalography (EEG), predictive surprise, model-based

analysis, single-trial analysis

1. INTRODUCTION

Humans make predictions by using prior information (Doya et al., 2007; Friston, 2008), and the
prior information is derived from what humans have experienced. The prediction of an event’s
occurrence is equivalent to the estimation of the generative model for the event (Robert, 2007).
However, the manner in which one utilizes that experience in estimating the generative model
remains unclear.

One approach for revealing how experience affects human prediction is the observation of
event-related potentials (ERPs). ERPs are the measured brain responses for a specific internal or
external event (Clark, 2013). Some ERP components observed on electroencephalograms (EEGs)
are affected by the probability of the occurrence of the event (Sutton et al., 1965; Squires et al.,
1977; Picton, 1992). In particular, a slow variation observed about 300 ms after the event on
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the EEG potentials is called P300, and its peak amplitude depends
on the probability of the event’s occurrence (Duncan-Johnson
and Donchin, 1977). Such ERP components are considered to
reflect the process for predicting events and are widely used as
a medium for analyzing human cognition (Horovitz et al., 2002;
Sanmiguel et al., 2013).

The relation between these ERP components and probability
has been discussed by using a quantity called the degree of surprise
or simply surprise (Ostwald et al., 2012). One concept of surprise
is called predictive surprise that represents the subjective self-
information, information content, or surprisal (Shannon, 1948)
that an observer receives from an observed event (Donchin and
Coles, 1988). Recently, Mars et al. (2008) and Kolossa et al.
(2012) addressed the question of which factors in a preceding
stimulus sequence affect predictive surprise to a present stimulus
by investigating the relation between the stimulus sequence and
P300 properties. To identify these factors, Mars et al. (2008)
and Kolossa et al. (2012) used regression models in which the
input was a stimulus history and the output was the P300
amplitude. Their approach with these regression models is
called the model-based approach. Assuming that the observed
brain activities reflect the prediction process, the model-based
approach can confirm which factors human prediction depends
on by finding a model that accurately estimates the amplitude
of P300. Their results suggest that surprise estimated by
the integration of three factors (long-term history, short-term
history, and alternating expectations of the stimulus sequence)
adequately predicts the P300 amplitude (Squires et al., 1976;
Kolossa et al., 2012).

The other concept of surprise, proposed by Baldi and Itti
(2010), is called Bayesian surprise that represents the degree of
updating in the beliefs of an observer who experiences a new
event. Recent studies (Kolossa et al., 2015; Seer et al., 2016)
showed that predictive and Bayesian surprises affect different
subcomponents of P300 called P3a and P3b (Polich, 2007).
Predictive surprise better explains P3b, which has a long latency
among the subcomponents. However, Bayesian surprise better
explains P3a, which has a short latency. The results suggest
that the subcomponents reflect distinct neural mechanisms for
prediction.

To reveal the relation between ERPs and surprise, theoretical
frameworks, such as the context-updating model (Donchin,
1981; Donchin and Coles, 1988; Polich, 2007), predictive
coding (Friston, 2002; Spratling, 2010), and Bayesian brain
hypothesis (Hampton et al., 2006; Kopp, 2006; Ostwald et al.,
2012; Lieder et al., 2013), have been convincingly established.
The frameworks explain human behavior or brain responses
by positing the existence of an internal model that humans
constantly and automatically generate about the external
world (Donchin, 1981). Different processes of the response of
the internal model to an external event lead to different brain
activities, such as the P3a and P3b variations (Kolossa et al.,
2015).

What state transition the internal model builds is discussed
in this study. Previous studies, such as Mars et al. (2008) and
Kolossa et al. (2012), assumed that the internal model is without
state transitions. Accordingly, surprises were estimated based

on a generative model in a stationary state (a stationary-state
model). In contrast, the purpose of our study is to find evidence
of a brain mechanism that codes state transitions. If the brain
can generate an internal model with state transitions (the state
transition model), then humans would not acquire a probability
distribution of events but would acquire a model that describes
how different states or situations of the world are connected to
each other (Gläscher et al., 2010).

The possibility that the state transition models explain some
effects in ERP components motivated this study. These properties
of an event sequence, such as stationary-statemodels, alternation,
and repetition (Matt et al., 1992; Rac-Lubashevsky and Kessler,
2016) that explain the variation in some ERP components can
be generalized with a state transition model. Moreover, Gläscher
et al. (2010) suggested that probability distributions with state
transitions are coded in the brain during the performance of
reinforcement learning tasks (Saito et al., 2015). Therefore, we
hypothesized that, for prediction, a mechanism for coding state
transitions exist; that is, surprise is modeled not only with the
probability distribution of the stationary state but also with the
probability distribution with state transitions.

In the present study, we investigated the relation between
predictive surprise in a generative model that has state transitions
and electrophysiological signals via a model-based analysis. To
distinguish predictive surprises in the different state models,
predictive surprise with state transitions is called predictive
transition surprise, and predictive surprise in a stationary state
is called predictive stationary surprise. Although the EEG signals
were recorded with a two-choice response time task, the same
one used by Mars et al. (2008) and Kolossa et al. (2012),
the generative models for the event sequences were different.
In previous studies, predictive transition surprise converged
with predictive stationary surprise as the number of trials
increased; therefore, that type of setting cannot isolate the
effects of predictive transition surprise. To avoid this situation,
we used state transition models for the generative models;
we controlled generation of the event sequence with a simple
Markov chain (Norris, 1998). In the model-based analysis, we
used predictive stationary or transition surprise of the Markov
chain as the explanatory variable. As the response variable,
we used the EEG potentials, which were observed in various
electrodes and latencies. This analysis enabled us to visualize the
effects of these surprises on various ERP components, such as
P3a and P3b. The results show different brain activities that seem
to be associated with the stationary-state model and the state
transition model.

2. MATERIALS AND METHODS

2.1. Measurement
2.1.1. Participants
Twelve individuals (10 male and 2 female) participated in the
experiment. Their ages ranged from 21 to 27 years (M = 23.6;
SD = 1.7). The participants had normal or corrected-to-normal
visual acuity. All participants provided written informed consent.
The experimental protocols were approved by the Committee
for Human Research at the Toyohashi University of Technology,
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Aichi, Japan, and the experiment was conducted in accordance
with the committee’s approved guidelines.

2.1.2. Experimental Design
The participants performed a two-choice response time (TCRT)
task (Figure 1) without feedback about response accuracy (Mars
et al., 2008; Kolossa et al., 2012): Two visual stimuli were
presented about every 1.5 s, and the participants were required
to respond to each stimulus with the previously associated
button as quickly as possible. Visual stimuli were presented on
an LCD display [VIEWPixx EEG (VPixx Technologies)] with
Psychtoolbox-3 and MATLAB R2011b (The MathWorks, Inc.).
The participants were seated in front of the display. They touched
their left or right hand to the left or right button of a four-button
trackball on the desk between the participant and the display.

A single trial consisted of the following procedures. First, the
participant gazed at the fixation cross (2.0◦ × 2.0◦) presented at
the center of the display for 400–600 ms. Then, the fixation cross
vanished, and a circle or a square (2.0◦ × 2.0◦) was presented
for 200 ms at the location where the fixation cross had originally
been presented. The participant clicked the left or right button
as quickly as possible. The participant’s response was accepted
from 200 ms to 1000 ms after the symbol was presented. If the
participant did not respond during this period, then the trial was
recorded as a no-response trial. The fixation cross was presented
when the symbol vanished.

The symbol-response assignment and instructions were
given to the participants before the experiment. For example,
participants were instructed “to click the left (right) button when
the circle (square) appears.” Before the measurement blocks, the
participants underwent a training blocks for the response task
consisting of 50 trials; the training blocks was repeated until the
participants’ response accuracy reached 90%. During the training
blocks, the stimulus sequences were generated randomly with a
uniform probability distribution.

The symbol stimuli (circle and square) were generated with
simple Markov chains. There were two conditions (C1 and C2)
with differentMarkov chains. Let Event a and Event b correspond
to either the circle or the square, respectively, and let En be the
present event and En− 1 be the preceding event. This assignment
is denoted as the event-symbol assignment. Condition C1 can
be represented with the transition probabilities P(En | En− 1) as

Reponse IntervalInstruction

Presentation

Task
Click Click

400--600 ms800 ms200 msTime

1 trial

Track ball for response

FIGURE 1 | The experimental procedure. This represents the participant’s

task for a case in which the square corresponds to the right click and the circle

corresponds to the left click.

P(a | a) = P(b | b) = 0.3 and P(b | a) = P(a | b) = 0.7.
For Condition C2, P(a | a) = 0.3, P(b | a) = 0.7, and
P(a | b) = P(b | b) = 0.5. The Markov chains for the two
conditions are summarized in Figure 2.

A single block consisted of 300 trials, and the participants
executed a total of four blocks. Two blocks were of Condition
C1, and two were of Condition C2. The event sequence was
the same for the two blocks that had the same condition. The
participants took a break of at least two minutes between blocks.
The participants were not told that there were two conditions
for the generative model, and according to a question that we
asked the participants after the experiment, none noticed that
there were two conditions.

The symbol-response and event-symbol assignments and the
block orders were decided randomly as follows. The symbol-
response assignment was different for each participant. The
event-symbol assignment was chosen randomly during the
blocks. The order of the blocks with the two conditions was
random.

2.1.3. EEG Acquisition
The EEG signals were recorded using a BioSemi ActiveTwo
system. The EEG recording was performed at a sampling rate
of 512 Hz with a 64-electrode cap, referenced to the common
mode sense (CMS) active electrode. The 64 active electrodes were
positioned to cover the whole head according to the extended
International 10/10 system. The signals in the electrodes placed
on the left and right earlobes, on the right side of the right
eye (on the temple), and at the left, upper, and lower sides of
the left eye were also measured. For preprocessing, the signals
were re-referenced with the averaged potential of both earlobes.
Moreover, a Butterworth bandpass filter (passband: 0.3–30 Hz,
order: 4) was applied to the signals. Epochs were corrected using
the−100 to 0 ms period as the baseline. The epochs in which the
vertical electroculogramsweremore than±80µVwere removed.

2.2. Analysis of Behavior and EEG
In our analysis, the symbols aa, ab, ba, and bb represent the
data for the present stimulus after the preceding stimulus. For
example, ab represents the data for Event b after Event a.

For the behavioral data, the clicked buttons and the
response times of the participants’ responses for all trials were
acquired. The trials in which the participants responded with
the wrong button were removed from the analysis of the
response time. We tested the averaged behavioral data for
each participant with a two-way repeated-measures analysis of
variance (ANOVA) (Cohen et al., 2003; Rac-Lubashevsky and

ba

0.7

0.3 0.3

0.7

ba

0.7

0.3 0.5

0.5

A B

FIGURE 2 | The Markov chains used to generate the event sequences

in the two conditions. (A) Condition C1. (B) Condition C2.
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Kessler, 2016) with the factors Present (the present stimulus
with two levels: Event a and Event b) and Preceding (the
preceding stimulus with two levels: Same and Different as the
present stimulus). The combinations of the two factors resulted
in the sequences aa for (Event a, Same), ba for (Event a,
Difference), bb for (Event b, Same), and ab for (Event b,
Difference).

For conventional analysis of ERPs, the trials in which the
participants responded with the wrong button were removed
from the analysis. We tested the averaged EEG potential at each
channel and latency for each participant with an ANOVA in
which the factors were the same as those for the behavioral
data.

2.3. Model-Based Analysis
For finding the time periods and electrodes in the EEG signals
that are well explained by trial-by-trial surprises, we used a
model-based analysis of regression with a generalized linear
model (GLM) (Bolker et al., 2009). Trial-by-trial surprises
were estimated based on the preceding series of the stimulus.
The two types of surprise were compared in their effects
on the EEG potentials: surprise generated by stationary-
state models and by state transition models. A model-based
analysis evaluates the relation between two variables with
an indicator representing how much one variable accurately
explains and/or predicts the other. In this analysis, the
variable used to explain the other variable is called the
explanatory variable, and the variable to be explained is called
the response variable (Haykin, 2005; Dobson and Barnett,
2011).

Surprise concerning the present event (called predictive
surprise in Kolossa et al., 2012, 2015) was used as the
explanatory variable. Predictive stationary surprise is defined as
the logarithm of the overall probability given the preceding series
of events. Figure 3 shows the trial-by-trial change in predictive
stationary surprise for each condition. Additionally, predictive
transition surprise is defined as the logarithm of the probability
transitioning from the preceding event to the present event given
the preceding series of events. Figure 4 shows the trial-by-trial
change in predictive transition surprise for each condition. The
detailed definitions of surprises are described in Section A.1.

The EEG potentials of each trial were used as the samples of
the response variable for the model-based approach. Before the
potentials were extracted, the EEG signals over the two blocks of
the same condition in each trial were averaged. If either sample
in the two blocks was missing because of a wrong task response,
no response, or artifact rejection, those trials were removed
from the analysis (Kolossa et al., 2012). The trial-by-trial ERPs
were extracted by averaging the preprocessed EEG signals over
a temporal window of ±50 ms around every 20 ms from 0 to
700 ms from the onset of the stimulus.

The samples of Conditions C1 and C2 were merged into a
sample set. The merging reduced specific effects of the generative
models, such as alternation expectation (Squires et al., 1977;
Mars et al., 2008; Kolossa et al., 2012). The number of the
samples for each channel and latency was 5578 (the participants’
mean= 464.83; and SD= 44.56).

A

B

FIGURE 3 | Predictive stationary surprise IS at the nth trial. (A) Condition

C1. (B) Condition C2.

A

B

FIGURE 4 | Transition stationary surprise IT at the nth trial. (A) Condition

C1. (B) Condition C2.

A GLM (Bolker et al., 2009) was adopted for the regression
of the explanatory and response variables. The model is
summarized in Figure 5. The N observed samples of the set of
explanatory and response variables (N = 5578) are represented
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FIGURE 5 | The graphical model for the model-based analysis. The variables, the values of which are determined stochastically, are represented by the dashed

lines. The deterministic variables are represented by the solid lines. The distributions surrounded by circles represent the non-informative prior probability distributions.

as {xn, yn}
N
n= 1, which corresponds to predictive surprise and

the EEG potential at a channel and time period for the nth
sample. The EEG potential is modeled by the linear model of
estimated surprise with consideration of individual differences
formulated as µn = b1xn + b2 + rn and an additive
Gaussian noise, N (0, σ 2

n ), with the variance formulated as σ 2
n =

g1xn + g2 + un. The unknown parameters were found with
the maximum log-likelihood method (Gelman et al., 2013).
Details of the model and the fitting procedure are given in
Section A.2.

The fitting accuracy of the regression model was evaluated
using the log-Bayes factor of the estimated model. The model
MS was estimated with predictive stationary surprise, and MT

was estimated with predictive transition surprise. Moreover, a
common referencemodelMNULL was also estimated with a set in
which all samples for the response variables were 1 (Neyman and
Pearson, 1933; Kolossa et al., 2015). The log-likelihood of MM

denoted by log LM for M is S, T, or NULL. As an indicator for
the fitting accuracy, the log-Bayes factor BM with the common
reference model (Kass and Raftery, 1995; Kolossa et al., 2015) was
adopted:

BM = log LM − log LNULL, (1)

forM is S or T.
The log-Bayes factor was evaluated with a likelihood-

ratio test (Neyman and Pearson, 1933) that evaluates how
more accurately the model fits than the common reference
model. A parametric bootstrap method (Davison and Hinkley,
1997) (the number of sampling = 1000) was used for the
test.

3. RESULTS

3.1. Behavioral Data
The response time for the button-clicking task was defined as the
duration between the display of the stimulus and the clicking of
the button. Mean values are displayed in Figure 6. The ANOVA
showed a main effect of the factor Present in Condition C2
[F(1, 11) = 15.8042, p = 0.0022].

The response accuracy for the button-clicking task was
defined as whether or not the participant clicked the assigned
button correctly. Mean values are displayed in Figure 7. The
ANOVA showed a main effect of the factor Preceding in
Condition C1 [F(1, 11) = 16.5023, p = 0.0019]. In Condition
C2, main effects were found for the factors Present [F(1, 11) =

10.1730, p = 0.0086] and Preceding [F(1, 11) = 6.5105, p =

0.0269]. An interaction of the two factors [F(1, 11) = 6.2011,
p = 0.03] was also found in Condition C2. Simple effects for the
interaction were found for Present at the level Same [F(1, 11) =

14.8977, p = 0.0027] and for Preceding at the level Event a
[F(1, 11) = 14.9957, p = 0.0026].

The results of the statistical analysis suggest that the behavior
(response time and accuracy) was affected by state transitions.
The main effect of Preceding on response accuracy in Condition
C1 reflects the high transition probability for Sequences ab and
ba in the generative model. The difference in the stationary
probability between Events a and b in Condition C2 can explain
the main effects by Present for the response time and accuracy.
In the response accuracy, the simple effect by Present at the level
Same corresponds to the difference in the transition probabilities
between Sequences aa (0.3) and bb (0.5) in Condition C2. The
simple effect by Preceding at the level Event a corresponds to
the difference between Sequences aa (0.3) and ba (0.5). The
differences in the transition probabilities between Sequences ab
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A B

FIGURE 6 | Response time for the single stimulus or sequence. The

error bars show the standard error. (A) Condition C1. (B) Condition C2.

A B

FIGURE 7 | Response accuracy for the single stimulus or sequence.

The error bars show the standard error. (A) Condition C1. (B) Condition C2.

(0.7) and bb (0.5), and Sequences ab (0.7) and ba (0.5) in the
generative model of Condition C2, however, did not appear in
behavior.

3.2. Event-Related Potentials
Figure 8 depicts the grand-averaged ERP waveforms. The
ANOVA showed an effect of Preceding in FCz (Conditions C1
andC2) and CPz (ConditionC1) at a latency around 340–400ms.
An effect of Present was found in CPz, Condition C2 at a latency
around 370–400 ms. In Figure 8A, the peak amplitude for the
sequences that have a transition probability of 0.3 (aa and bb) is
higher than that for those that have a transition probability of 0.7
(ab and ba). Sequence aa in Condition C2, which has a transition
probability of 0.3, leads to the highest peak amplitude, as shown
in Figures 8B,D.

The peaks of P300 are at around 400 ms, which are 100 ms
later than the peak latencies reported by Kolossa et al. (2012), who
employed a color discrimination task. This difference could be
caused by the difference in the stimulus features that an observer

should detect for the TCRT tasks (Smid et al., 1999). Mars et al.
(2008), who employed a shape discrimination task, reported a
similar peak latency as in this analysis, around 400 ms.

3.3. Model-Based Analysis
Figure 9 displays the log-Bayes factors. We found high log-Bayes
factors (shown in red), which indicate high fitting accuracy, in
some channels and latencies.

For the stationary-state model MS, the likelihood-ratio test
showed that the models that reached a log-Bayes factor ≥ 1487
fitted significantly more accurately than the common reference
model (p < 0.05). The latencies at the channels FCz and CPz
in which the statistically significant differences were found are
shown as the red bars with the ERP waveforms in Figure 8. At
FCz, effects are found within 300–360 and 500–580 ms. At CPz,
effects are found within 380–400 and 480–600 ms.

For the state transition model MT, the likelihood-ratio test
showed that the models that reached a log-Bayes factor ≥

2241 were statistically significant (p < 0.05). The latencies at
the channels FCz and CPz in which the statistically significant
differences were found are shown as the green bars with the
ERP waveforms in Figure 8. At FCz, an effect is found within
340–480 ms. At CPz, an effect is found within 340–440 ms.

In Figure 10A, which shows the change in the log-Bayes
factors according to the stage of the trials, an increase at the
middle stage and a decrease at the last stage in the log-Bayes
factors for MT (t = 360 ms) were observed at FCz and Cz.
Figure 10B shows that the log-Bayes factor forMS at Cz and CPz
increases as the trials accumulate.

4. DISCUSSION

This study investigated the effects of predictive stationary
surprise and predictive transition surprise on EEG potentials
under the assumption that the internal model is formed with
state transitions and predictive surprise is based not only on a
stationary-state model but also on a state transition model. For
this, we applied Markov chains to generate event sequences in
order to isolate the effects of stationary and transition surprises.
The results show that predictive stationary surprise better
explains P3b and predictive transition surprise better explains
P3a. This suggests two distinct mechanisms in human prediction.
The effect of predictive transition surprise on P3a suggests that a
mechanism for estimating the generative model exists and that
the internal model forms a state transition model. The result also
indicates a mechanism for processing a stationary-state model
as observed by the variability of P3b. The dependencies on time
(the number of observed events) of these effects could reflect the
process to form the observer’s prediction.

We adopted a simple procedure in which predictive surprise
was estimated as the self-information of the present event. The
self-information for the event was estimated from the preceding
event sequences. This procedure is equivalent to the procedure
proposed by Mars et al. (2008). Kolossa et al. (2012) improved
the model as the digital filtering (DIF) model. However, the
optimization problem for the parameters in the DIF model is
very complex, and the optimization needs to use an empirical
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A B

C D

FIGURE 8 | The grand-averaged EEG potentials observed at the channels FCz and CPz for each sequence with two successive stimuli. The vertical

dashed lines located at 0 and 200 ms represent the onset and offset of the symbol stimulus. The vertical solid lines represents the latency when the maximum

amplitude was observed. The time periods in which the main effects are found in the ANOVA at each channel are shown by the red (Present), green (Preceding), and

blue (interaction) unfilled bars (p < 0.05). The time periods in which the main effects are found in the log-Bayes factors at each channel are shown by red (the

stationary-state model MS ) and green (the state transition model MT ) filled bars (p < 0.05). (A) FCz (Condition C1). (B) FCz (Condition C2). (C) CPz (Condition C1).

(D) CPz (Condition C2).

A

B

FIGURE 9 | Log-Bayes factors BM for each stage of the trials (left to right: whole trials (1st–300th) and early (1st–100th), middle (101st–200th), and last

(201st–300th) stages). The factor decreases as the color turns from red to blue (see the color bar beside each figure). (A) Model based on predictive stationary

surprise MS. (B) Model based on predictive transition surprise MT.
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A B

FIGURE 10 | Log-Bayes factors BM at the channels, FPz and CPz. The factors were derived using the ±50th trials from the index of the x-axis (e.g., for the trial

index 150, the 100th to 200th trials were used). (A) Predictive transition surprise, t = 360 ms. (B) Predictive stationary surprise, t = 480 ms.

procedure, which does not have the guarantee of a global
optimum. Since we focused on the effects on the brain activity
that differs between the stationary-state and state transition
probabilities, we adopted a fairly simple model, one that does
not have any parameters that need to be optimized. Moreover,
the DIF model does not accurately produce surprise associated
with the state transition model because it is based on a linear
combination of the three factors.

The results show that the behavioral data (response accuracy
and response time), ERP waveforms, and log-Bayes factors
depend on predictive stationary surprise. The behavioral data
results correspond to those of Miller (1998) and Kolossa et al.
(2012). In the ERP results, as Polich (2007) suggested, the ERP at
390 ms in the centro-parietal region dependent on the stationary
probability can be observed. From the model-based analysis, the
high fitting accuracy with a centro-parietal focus within 480–
600 ms can be considered to be a result of a variation in the
P3b component. This speculation is supported by Kolossa et al.
(2015), who suggested that P3b is more strongly associated with
predictive stationary surprise than P3a.

The effects of predictive transition surprise can be seen in
the present results. The behavioral results suggest that response
accuracy and response time depend on the preceding event
even if the present event is the same: The difficulty of the
response depends on the transition probability distribution. The
feature observed in the ERP waveforms (Figure 8), that high
transition surprise leads to a high peak, is similar to ERP
responses to stationary surprise. We suggest here that the effect
of the transition probability on behavior and ERPs has not
been revealed clearly. In the model-based analysis, the high
fitting accuracy with a central focus within 340–480 ms can be
considered to be caused by a variation in P3a because similar
features in its area (Kopp and Lange, 2013) and latency (Kolossa
et al., 2015) have been reported.

The dependence of the P3a component on predictive
transition surprise suggests that the participants estimated state
transition models as the generative model. This can be explained
by introducing Bayesian surprise. Kolossa et al. (2015) showed

that Bayesian surprise yields a superior model for explaining
the variation in P3a distributed in the fronto-central region.
This suggests that the variation in P3a occurs via the updating
of the internal model. Because the P3a, and thus the update,
can be modeled better by predictive transition surprise than
by predictive stationary surprise in this experimental setting, it
appears that the internal model is associated more strongly with
a model with state transitions than with a stationary model.
Namely, the internal model approximates a Markov chain. This
speculation is supported by the decrease in the fitting accuracy
for P3a inMT at the last stage (Figure 10A) because the internal
model converges by accumulating the event observations and
Bayesian surprise is slight in the last stage. This convergence
corresponds to the convergence in predictive transition surprise
shown in Figure 4.

The effect of predictive stationary surprise shows that human
prediction has a mechanism different from that of the generative
model. Although the internal model is built based on the state
transition model, the P3b components depend on the stationary
probability distribution. This result suggests that P3b is not
affected by the state transitions and mainly reflects the stationary
state. The effect of stationary-state models on P3b has been
confirmed by El Karoui et al. (2015) and Bekinschtein et al. (2009)
as the global effect. The increase of the fitting accuracy for P3b
at the last stage is consistent with a feature of the global effect
that is related to the accumulation of an event on longer time
scales (d’Acremont et al., 2013; El Karoui et al., 2015).

Although Kolossa et al. (2015) showed that P3b is distributed
in the centro-parietal region, the effect of the stationary-
state model is observed also in fronto-central region. This
effect could be caused by a P300 latency shift that novelty
detection (Courchesne et al., 1975; Knight, 1984) and
attention (Kahneman, 1973) affect. This hypothesis is supported
by the effect observed in both time periods of the ascending and
descending flanks of P300 as shown in Figures 8A,B.

The electrophysiological effects of the two generative models
we tested in this study, the stationary-state and state transition
models, support theoretical frameworks regarding ERPs, such as
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the context-updating model, predictive coding, and the Bayesian
brain hypothesis. Moreover, the effects suggest the following
hypotheses about what kind of models the brain adopts as
the internal model. (1) If the external generative model has
state transitions, then the internal model can represent the
state transitions. (2) If the external generative model does not
change over time, then updating of internal model ceases at a
certain point. (3) P3b considered to be affected by prediction
errors (Spratling, 2010; Kolossa et al., 2012) does not directly
reflect the errors between a present event and a prediction
generated by the internal model—the P3b variability is caused
by the prediction errors for a stationary-state model translated
from the internal model or is led by a different process from the
generating of the internal model.

As pointed out in Mars et al. (2008) and Kolossa et al. (2012),
the TCRT task requires motor responses. Therefore, it is still
an open problem whether the cause of the variation in the ERP
components is surprise conveyed by the stimulus or surprise
associated with the motor responses.

We conclude that our approach usingMarkov chains provides
observation of the different effects on ERPs produced by

surprises on the stationary-state and state transition models.
The differences in the effects suggest that an internal model in
the brain can form a probability model with state transitions.
The effects of a stationary-state model suggest the existence of
a different brain mechanism from that for forming the internal
model. Moreover, a change in these effects by the accumulation of
events was observed. This shows the part of neural responses that
reflects a brain mechanism by which humans gain predictions
from their experiences.
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A. DETAILS OF THE MODEL-BASED
ANALYSIS

A.1. Predictive Surprise
Given an event sequence composed of n stimuli E0,E1, . . . ,En−1

where En′ ∈ {a, b} for n′ = 0, . . . , n− 1, surprise concerning the
nth trial that is based on the stationary or transition probability
is defined as follows.

The stationary probability that En is X is denoted by Pn(X),
defined by

Pn(X) = Pn(X | {En′}
n− 1
n′ = 0)

=

∣

∣{En′ | En′ = X, n′ = 0, . . . , n− 1}
∣

∣

n
,

(A1)

where X ∈ {a, b}. Then, predictive stationary surprise Pn(X) is
defined by

I(S)n = log2 Pn(En). (A2)

The transition probability that En is X is denoted by Pn(X |

En−1), defined as

Pn(X | En− 1)

=Pn(X | En− 1, {En′}
n′ − 2
n′ = 0)

=

∣

∣{En′ | En′ = X,En′−1 = En−1, n
′ = 0, . . . , n− 1}

∣

∣

|{En′ | En′ = X, n′ = 0, . . . , n− 1}|
.

(A3)

Then predictive transition surprise Pn(X | En−1) is defined as

I(T)n = log2 Pn(En|En−1). (A4)

A.2. Regression Model
In this section, we describe the regression model summarized in
Figure 5. We assume that the samples of the response variable are
generated with a Gaussian distribution by

yn ∼ N (µn, σ
2
n ), (A5)

where N (µ, σ 2) represents a Gaussian distribution with mean µ

and variance σ 2. The parameters of the distribution are assumed
to be

µn = b1xn + b2 + rn, (A6)

and

σ 2
n = g1xn + g2 + un, (A7)

where b1 and g1 are the slopes, b2 and g2 are the intercepts of
the model, and rn and un are the individual differences of the
participants. Let Pp be the set of the indexes of the samples
obtained from the participant p, where Pi ∩ Pj = ∅ (i, j =

1, . . . ,NP, i 6= j), P1 ∪ P2 ∪ · · · ∪ PNP = {1, . . . ,N}, and NP

is the number of participants. Then, rn and un are defined as

rn = r̂p, n ∈ Pp (A8)

and

un = ûp, n ∈ Pp. (A9)

Therefore, the unknown parameters for the individual difference
in the model are {r̂p, ûp}

NP
p= 1, not {rn, un}

N
n= 1. Moreover, we

assume the priors for b1, b2, g1, g2, {r̂p}
NP
p= 1, and {ŝp}

NP
p= 1 to be

b1 ∼ N (µb1 , σ
2
b1
), (A10)

b2 ∼ N (µb2 , σ
2
b2
), (A11)

g1 ∼ G(αg1 ,βg1 ), (A12)

g2 ∼ G(αg2 ,βg2 ), (A13)

r̂p ∼ N (µr , σ
2
r ), p = 1, . . . ,NP, (A14)

and

ûp ∼ G(αu,βu), p = 1, . . . ,NP, (A15)

where G(α,β) is a gamma distribution with shape α and
scale β . Furthermore, we define the hyper priors for σ 2

rp
and

βup as

σ 2
r ∼ U(ar , br), (A16)

and

σ 2
u ∼ U(au, bu), (A17)

where U(a, b) is the uniform distribution over the interval
[a, b]. The undefined parameters for the model were assumed
to be constants. The parameters shown in Table A1 were
set to give a non-informative prior distribution for the
parameters.

We found the unknown parameters for the hierarchical
model by sampling with the Markov chain Monte Carlo
(MCMC) method (Gelman et al., 2013). In particular, we
used the Metropolis–Hastings algorithm implemented in PyMC
2.3.6 (Patil et al., 2010) for the sampling. The number of sampling
was 100,000 (burn-in: 10,000).

TABLE A1 | The parameters that we consider to be constants in the model

(Figure 5) and their values.

Parameter Value Parameter Value

µb1 0 σb1 100

µb2 0 σb2 100

αg1 1 βg1 100

αg2 1 βg2 100

µr 0 αu 1

ar 0 br 100

au 0.1 bu 100
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