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Recent developments in neuromorphic hardware engineering make mixed-signal VLS| neural
network models promising candidates for neuroscientific research tools and massively parallel
computing devices, especially for tasks which exhaust the computing power of software
simulations. Still, like all analog hardware systems, neuromorphic models suffer from a constricted
configurability and production-related fluctuations of device characteristics. Since also future
systems, involving eversmaller structures, will inevitably exhibit such inhomogeneities on the
unit level, self-regulation properties become a crucial requirement for their successful operation.
By applying a cortically inspired self-adjusting network architecture, we show that the activity
of generic spiking neural networks emulated on a neuromorphic hardware system can be kept
within a biologically realistic firing regime and gain a remarkable robustness against transistor
level variations. As a first approach of this kind in engineering practice, the short-term synaptic
depression and facilitation mechanisms implemented within an analog VLS| model of I&F neurons
are functionally utilized for the purpose of network level stabilization. We present experimental
data acquired both from the hardware model and from comparative software simulations which
prove the applicability of the employed paradigm to neuromorphic VLS| devices.
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leaky integrate-and-fire neuron, parallel computing, PCSIM

INTRODUCTION

Software simulators have become an indispensable tool for investi-
gating the dynamics of spiking neural networks (Brette et al., 2007).
But when it comes to studying large-scale networks or long-time
learning, their usage easily results in lengthy computing times
(Morrison et al., 2005). A common solution, the distribution of
a task to multiple CPUs, raises both required space and power
consumption. Thus, the usage of neural networks in embedded
systems remains complicated.

An alternative approach implements neuron and synapse models
as physical entities in electronic circuitry (Mead, 1989). This tech-
nique provides a fast emulation at a maintainable wattage (Douglas
et al,, 1995). Furthermore, as all units inherently evolve in parallel,
the speed of computation is widely independent of the network size.
Several groups have made significant progress in this field during the
last years (see for example Indiveri et al., 2006; Merolla and Boahen,
2006; Schemmel et al., 2007, 2008; Vogelstein et al., 2007; Mitra et al.,
2009). The successful application of such neuromorphic hardware in
neuroscientific modeling, robotics and novel data processing systems
will essentially depend on the achievement of a high spatial integration
density of neurons and synapses. As a consequence of ever-smaller
integrated circuits, analog neuromorphic VLSI devices inevitably suf-
fer from imperfections of their components due to variations in the
productions process (Dally and Poulton, 1998). The impact of such
imperfections can reach from parameter inaccuracies up to serious
malfunctioning of individual units. In conclusion, the particular,
selected emulation device might distort the network behavior.

For that reason, designers of neuromorphic hardware often
include auxiliary parameters which allow to readjust the charac-
teristics of many components. But since such calibration abilities
require additional circuitry, their possible extent of use usually has
to be limited to parameters that are crucial for the operation. Hence,
further concepts are needed in order to compensate the influence of
hardware variations on network dynamics. Besides increasing the
accuracy of unit parameters like threshold voltages or synaptic time
constants, a possible solution is to take advantage of self-regulating
effects in the dynamics of neural networks. While individual units
might lack adequate precision, populations of properly intercon-
nected neurons can still feature a faultless performance.

Long-term synaptic potentiation and depression (Morrison
etal.,2008) might be effective mechanisms to tailor neural dynam-
ics to the properties of the respective hardware substrate. Still, such
persistent changes of synaptic efficacy can drastically reshape the
connectivity of a network. In contrast, short-term synaptic plastic-
ity (Zucker and Regehr, 2002) alters synaptic strength transiently.
As the effect fades after some hundred milliseconds, the network
topology is preserved.

We show that short-term synaptic plasticity enables neural net-
works, that are emulated on a neuromorphic hardware system, to
reliably adjust their activity to a moderate level. The achievement
of such a substrate on a network level is an important step toward
the establishment of neuromorphic hardware as a valuable scientific
modeling tool as well as its application as a novel type of adaptive
and highly parallel computing device.
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For this purpose, we examine a generic network architecture as
proposed and studied by Sussillo et al. (2007), which was proven
to feature self-adjustment capabilities. As such networks only con-
sist of randomly connected excitatory and inhibitory neurons and
exhibit little specialized structures, they can be found in various
cortical network models. In other words, properties of this archi-
tecture are likely to be valid in a variety of experiments.

Still, the results of Sussillo et al. (2007) not necessarily hold
for neuromorphic hardware devices: The referred work addressed
networks of 5000 neurons. As the employed prototype hardware
system (Schemmel et al., 2006, 2007) only supports some hundred
neurons, it remained unclear whether the architecture is suitable
for smaller networks, too. Furthermore, the applicability to the
specific inhomogeneities of the hardware substrate have not been
investigated before. We proof that even small networks are capable
of leveling their activity. This suggests that the studied architecture
can enhance the usability of upcoming neuromorphic hardware
systems, which will comprise millions of synapses.

The successful implementation of short-term synaptic plasticity
into neuromorphic hardware has been achieved by several work
groups, see, e.g., Boegershausen et al. (2003) or Bartolozzi and
Indiveri (2007). Nevertheless, this work presents the first func-
tional application of this feature within emulated networks. It is
noteworthy, that the biological interpretation of the used hardware
parameters is in accord with physiological data as measured by
Markram et al. (1998) and Gupta et al. (2000).

Since the utilized system is in a prototype state of develop-
ment, the emulations have been prepared and counter-checked
using the well-established software simulator Parallel neural
Circuit SIMulator (PCSIM; Pecevski et al., 2009). In addition, this
tool allowed a decent analysis of network dynamics because the
internal states of all neurons and synapses can be accessed and
monitored continuously.

MATERIALS AND METHODS

The applied setup and workflow involve an iterative process using
two complementary simulation back-ends: Within the FACETS
research project (FACETS, 2009), the FACETS Stage 1 Hardware
system (Schemmel et al., 2006, 2007) and the software simulator
PCSIM (Pecevski et al., 2009) are being developed.

First, it had to be investigated whether the employed network
architecture exhibits its self-adjustment ability in small networks
fitting onto the current prototype hardware system. For this pur-
pose, simulations have been set up on PCSIM which only roughly
respected details of the hardware characteristics, but comprised
a sufficiently small number of neurons and synapses. Since the
trial yielded promising results, the simulations were transferred
to the FACETS Hardware. At this stage the setup had to be read-
justed in order to meet all properties and limitations of the hard-
ware substrate. Finally, the parameters used during the hardware
emulations were transferred back to PCSIM in order to verify
the results.

In Sections “The Utilized Hardware System” and “The Parallel
neural Circuit SIMulator” both back-ends are briefly described.
Section “Network Configuration” addresses the examined network
architecture and the parameters applied. In Section “Measurement”,
the experimental setup for both back-ends is presented.

THE UTILIZED HARDWARE SYSTEM

The present prototype FACETS Stage 1 Hardware system physi-
cally implements neuron and synapse models using analog circuitry
(Schemmel etal.,2006,2007). Beside the analog neural network core
(the so-called Spikey chip) it consists of different (mostly digital)
components that provide communication and power supply as well
as a multi-layer software framework for configuration and readout
(Griibl, 2007; Briiderle et al., 2009).

The Spikey chip is built using a standard 180 nm CMOS process
on a 25-mm? die. Each chip holds 384 conductance-based leaky
integrate-and-fire point neurons, which can be interconnected or
externally stimulated via approximately 100,000 synapses whose
conductance courses rise and decay exponentially in time. As all
physical units inherently evolve both in parallel and time-contin-
uously, experiments performed on the hardware are commonly
referred to as emulations. The dimensioning of the utilized elec-
tronic components allows a highly accelerated operation compared
to the biological archetype. Throughout this work, emulations were
executed with a speedup factor of 10°.

In order to identify voltages, currents and the time flow in
the chip as parameters of the neuron model, all values need to
be translated between the hardware domain and the biological
domain. The configuration and readout of the system has been
designed for an intuitive, biological description of experimental
setups: The Python-based (Rossum, 2000) meta-language PyNN
(Davison et al., 2008) provides a back-end independent modeling
tool, for which a hardware-specific implementation is available
(Briiderle et al., 2009). All hardware-specific configuration and
data structures (including calibration and parameter mapping),
which are encapsulated within low-level machine-oriented soft-
ware structures, are addressed automatically via a Python Hardware
Abstraction Layer (PyHAL).

Using this translation of biological values into hardware
dimensions and vice versa which is performed by the PyHAL,
all values given throughout this work reflect the biological
interpretation domain.

Short-term synaptic plasticity

All synapses of the FACETS Stage 1 Hardware support two types
of synaptic plasticity (Schemmel et al., 2007). While a spike-timing
dependent plasticity (STDP) mechanism (Bi and Poo, 1997; Song
etal.,2000) is implemented in every synapse, short-term plasticity
(STP) only depends on the spiking behavior of the pre-synaptic
neuron. The corresponding circuitry is part of the so-called synapse
drivers and, thus, STP-parameters are shared by all synaptic con-
nections operated by the same driver. Each pre-synaptic neuron
can project its action potentials (APs) to two different synapse
drivers. Hence, two freely programmable STP-configurations are
available per pre-synaptic neuron. The STP mechanism imple-
mented in the FACETS Stage 1 Hardware is inspired by Markram
etal. (1998). But while the latter model combines synaptic facili-
tation and depression, the hardware provides the two modes sep-
arately. Each synapse driver can either be run in facilitation or
in depression mode or simply emulate static synapses without
short-term dynamics. Despite this restriction, these short-term
synapse dynamics support dynamic gain-control mechanisms as,
e.g., reported in Abbott et al. (1997).
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In the Spikey chip, the conductance g() of a synapse is composed
of a discrete synaptic weight multiplier w , the base efficacy w(#)
of a synapse driver and the conductance course of the rising and
falling edge p(#):

(1) = w,w,(0)-p(1) = w(1)-p(1)
with w e {0,1,2,...,15}. In this framework, STP alters the base
efficacy w(#) while the double-exponential conductance course of a
single post-synaptic potential is modeled via p(f) € [0,1]. Whenever
an AP is provoked by the pre-synaptic neuron, p(t) is triggered
to run the conductance course. To simplify matters, the product
w -w, (1) often is combined to the synaptic weight w(t) or just win
case of static synapses.

Both STP-modes, facilitation and depression, alter the synaptic
weight in a similar manner using an active partition I(t) € [0,1].
The strength w_ of a static synapse is changed to

Wfac(t) = Wt '[1+ k(l(t)_[-)))]:
Wdep(t):Wstat'[l_k'I(t)] (1)

in case of facilitation and depression, respectively. The parameters
A and B are freely configurable. For technical reasons, the change
of synaptic weights by STP cannot be larger than the underly-
ing static weight. Stronger modifications are truncated. Hence,
0= Wfac/dep < 2.“’stat'

The active partition I obeys the following dynamics: Without
any activity I decays exponentially with time constant T, while
every AP processed increases I by a fixed fraction C toward the
maximum,
a1

dt Torp

+C-(1-1)-8(t—t,,).

For C € [0,1], I is restricted to the interval mentioned above.
Since the active partition affects the analog value w,(#), the STP-
mechanism is not subject to the weight-discretization w,_of the
synapse arrays but alters weights continuously.

Figure 1 shows examples of the dynamics of the three STP-
modes as measured on the FACETS Stage 1 Hardware. The applied
parameters agree with those of the emulations presented through-
out this work.

Hardware constraints
Neurons and synapses are represented by physical entities in the
chip. As similar units reveal slightly different properties due to the
production process, each unit exhibits an individual discrepancy
between the desired configuration and its actual behavior. Since all
parameters are controlled by voltages and currents, which require
additional circuitry within the limited die, many parameters and
sub-circuits are shared by multiple units. This results in narrowed
parameter ranges and limitations on the network topology.
Beyond these intentional design-inherent fluctuations and
restrictions, the current prototype system suffers from some
malfunctions of different severity. These errors are mostly under-
stood and will be fixed in future systems. In the following, the
constraints which are relevant for the applied setup will be outlined.
For detailed information the reader may refer to the respective
literature given below.

facilitation'

MWWW\/WWk
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FIGURE 1 | Short-term plasticity-mechanism of the FACETS Stage 1
Hardware. A neuron is excited by an input neuron that spikes regularly at 20 Hz.
Three hundred milliseconds after the last regular spike a single spike is appended.
Additionally, the neuron is stimulated with Poisson spike trains from further input
neurons. The figure shows the membrane potential of the post-synaptic neuron,
averaged over 500 experiment runs. As the Poisson background cancels out, the
EPSPs provoked by the observed synapse are revealed. Time and voltage are
given in both hardware values and their biological interpretation. The three traces
represent different modes of the involved synapse driver. Facilitation: The plastic
synapse grows in strength with every AP processed. After 300 ms without
activity the active partition has partly decayed. Depression: High activity weakens
the synapse. Static: The synapse keeps its weight fixed.

Design-inherent constraints

As described above, synaptic weights are discrete values
w=w_ w, with w e {0,1,2,...,15} (Schemmel et al., 2006).
Since biological weights are continuous values, they are map-
ped probabilistically to the two closest discrete hardware
weights. Therefore, this constraint is assumed to have little
impact on large, randomly connected networks.

Each pre-synaptic neuron allocates two synapse drivers to
provide both facilitating and depressing synapses. Since only
384 synapse drivers are available for the operation of recur-
rent connections, this restricts the maximum network size to
384/2 = 192 neurons. After establishing the recurrent connec-
tions, only 64 independent input channels remain for exci-
tatory and inhibitory external stimulation via Poisson spike
trains (see Bill, 2008, Chapter VI.3).

Bottlenecks of the communication interface limit the maxi-
mum input bandwidth for external stimulation to approxima-
tely 12 Hz per channel when 64 channels are used for external
stimulation with Poisson spike trains. Future revisions are
planned to run at a speedup factor of 10* instead of 10°, effec-
tively increasing the input bandwidth by a factor of 10 from
the biological point of view (see Griibl, 2007, Chapter 3.2.1;
Briiderle, 2009, Chapter 4.3.7).

Malfunctions

The efficacy of excitatory synapses was found to be unsta-
ble. A frequent global activity of excitatory synapses has been
shown to decrease EPSP amplitudes up to a factor of two.
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Presumably, this effect depends on both the configuration
of the chip and the overall spike activity. We refer to this
malfunction as load-dependency of the synaptic efficacy in
the following. Since the error cannot be counterbalanced by
calibration or tuning the configuration, it is considered cru-
cial for the presented experimental setup (see Briiderle, 2009,
Chapter 4.3.4).

+ The current system suffers from a disproportionality between
the falling-edge synaptic time constant Ty, = 30 ms and the
membrane time constant T = 5 ms, i.e., a fast membrane
and slow synapses. This was taken into consideration when
applying external stimulation, as presented in Section “Applied
Parameters” (see Briiderle, 2009, Chapter 4.3.5; Kaplan
et al., 2009).

+ Insufficient precision of the neuron threshold comparator
along with a limited reset conductance result in a rather wide
spread of the neuron threshold and reset voltages V,,  and
V. . As both values are shared by multiple neurons, this
effect can only be partially counterbalanced by calibration.
The used calibration algorithms lead to 6, ~~3mV and
o, = 8mV (see Bill, 2008, Chapter IV.4; Briiderle, 2009,
Chapter 4.3.2).

+ Insufficient dynamic ranges of control currents impede a rea-
sonable configuration of the STP parameters A and f in Eq. 1
without additional technical effort. The presented emulations
make use of a workaround which allows a biologically realistic
setup of the STP-parameters at the expense of further adju-
stability. The achieved configuration has been measured and
is used throughout the software simulations, as well (see Bill,
2008, Chapter IV.5.4).

+ An error in the spike event readout circuitry prevents a simul-
taneous recording of the entire network. Since only three neu-
rons of the studied network architecture can be recorded per
emulation cycle, every configuration was rerun 192/3 = 64
times with different neurons recorded. Thus, all neurons have
been taken into consideration in order to determine average
firing rates. But since the data is obtained in different cycles, it
is unclear to what extent network correlation and firing dyna-
mics on a level of precise spike timing can be determined (see
Miiller, 2008, Chapter 4.2.2).

A remark on parameter precision. The majority of the parameter
values used in the implemented neuron model are generated
by complex interactions of hardware units, as transistors and
capacitors. Each type of circuitry suffers from different varia-
tions due to the production process, and these fluctuations sum
up to intricate discrepancies of the final parameters. For that
reason, both shape and extent of the variances often cannot
be calculated in advance. On the other hand, only few param-
eters of the neuron and synapse model can be observed directly.
Exceptions are all kind of voltages, e.g., the membrane voltage
or reversal potentials. The knowledge of all other parameters
was obtained from indirect measurements by evaluating spike
events and membrane voltage traces. The configuration given in
Section “Applied Parameters” reflects the current state of knowl-
edge. This means that some specifications — especially standard
deviations of parameters — reflect estimations which are based
on long-term experience with the device. But, compared to the

above-described malfunctions of the prototype system, distor-
tions arising from uncertainties in the configuration can be
expected to be of minor importance.

THE PARALLEL NEURAL CIRCUIT SIMULATOR
All simulations were performed using the PCSIM simulation envi-
ronment and were set up and controlled via the associated Python
interface (Pecevski et al., 2009).

The neurons were modeled as leaky integrate-and-fire cells (LIF)
with conductance-based synapses. The dynamics of the membrane
voltage V(7) is defined by

VO __ o vi—
Cm dt - glcak (V(t) \/rest)
=Y gu-(V()-E,)
k=1
_2 gi,k(t)'(V(t) - Ei)
k=1
+Inoise(t)’

where C_is the membrane capacity, g, is the leakage conductance,
V.. is the leakage reversal potential, and g1 and gi,k( t) are the
synaptic conductances of the N excitatory and N, inhibitory syn-
apses with reversal potentials E and E, respectively. The white noise
current I () haszero mean and a standard deviationc_, =5 pA.

It models analog noise of the hardware circuits.
The dynamics of the conductance g() of a synapse is defined by

% __80 w-8(t—t,,),
syn

where g(¢) is the synaptic conductance and wis the synaptic weight.
The conductances decrease exponentially with time constant T__
and increase instantaneously by adding w to the running value of
g(t) whenever an AP occurs in the pre-synaptic neuron at time ¢, .
Modeling the exponentially rising edge of the conductance course
of the FACETS Stage 1 Hardware synapses was considered negli-
gible, as the respective time constant was set to an extremely small
value for the hardware emulation.

If we used static synapses the weight w of a synapse was con-
stant over time. Whereas for simulations with dynamic synapses,
the weight w(#) of each synapse was modified according to the
short-term synaptic plasticity rules described in Section “Short-
Term Synaptic Plasticity”

The values of all parameters were drawn from random distribu-
tions with parameters as listed in Table 1.

NETWORK CONFIGURATION

In the following, the examined network architecture is presented.
Rather than customizing the configuration to the employed device,
we aimed for a generic, back-end agnostic choice of parameters.
Due to hardware limitations in the input bandwidth, a dedicated
concept for external stimulation had to be developed.

Network architecture

We applied a network architecture similar to the setup proposed
and studied by Sussillo et al. (2007) which was proven to fea-
ture self-adjustment capabilities. A schematic of the architecture
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Table 1| Full set of parameters.

Description Name Unit Mean p o/p T/p Comment

NETWORK ARCHITECTURE

Number of exc neurons N, 144

Number of inh neurons N, 48

Conn prob from exc to exc neurons Pss 0.1

Conn prob from exc to inh neurons e 0.2

Conn prob from inh to exc neurons P, 0.3

Conn prob from inh to inh neurons P 0.6

NEURONS (EXCITATORY AND INHIBITORY)

Membrane capacitance C. nF 0.2 0 0 by definition

Leakage reversal potential 7 mV -63,...,-55 variable parameter
Firing threshold voltage Vi esh mV -55.0 0.05 0.1

Reset potential Vet mV -80.0 0.1 0.2

Excitatory reversal potential E, mV 0.0 0 0 —20 mV in some simulations
Inhibitory reversal potential E mV -80.0 0 0

Leakage conductance Gioar nS 40.0 0.5 0.5 *)

Refractory period Ty ms 1.0 0.5 0.5

RECURRENT SYNAPSES

Weight of exc to exc synapses w,, nS 1.03 0.6 0.7 *) values refer to
Weight of exc to inh synapses w, nS 0.62 0.6 0.7 *) static synapses
Weight of inh to exc synapses w, nS 3.10 0.6 0.7 *)

Weight of inh to inh synapses w, nS 1.55 0.6 0.7 *)

Cond time constant for all synapses T, ms 30.0 0.25 0.5

Conversion factor for facilitation 1.10 to match with static syns
Conversion factor for depression 1.65 at regular firing of 20 Hz
Strength of STP A 0.78 0.1 0.2

Bias for facilitation B 0.83 0.1 0.2

STP decay time constant Torp ms 480 0.2 0.4

Step per spike for facilitation Coe 0.27 0.1 0.2

Step per spike for depression Cdep 0.1 0.1 0.2

EXTERNAL STIMULUS: POISSON SPIKE TRAINS

Number of exc external spike sources N,.o 32

Number of inh external spike sources N,.; 32

Number of exc inputs per neuron 4-6 uniform distribution
Number of inh inputs per neuron 4-6 uniform distribution
Firing rate per input spike train Vi Hz 11.8 0.2 0.2 *)

Weight of exc input synapses Woe nS 0.26,...,1.29 0.6 0.7 *) varied via W, and
Weight of inh input synapses Wi nS 0.77,....3.87 0.6 0.7 *)referto V. =-60 mV
Cond time constant for all synapses Ty ms 30.0 0.25 0.5

EXPERIMENT

Simulated time per exp run Too ms 4500 only t>1000 ms evaluated
Number of exp runs per param set n 20 x64 in hardware with same network

All values given in biological units. If not stated otherwise, values are drawn from a bound normal distribution with mean y, standard deviation 6, and bound m.
Parameters marked by a *) have been spread for the hardware emulations by configuration.

is shown in Figure 2. It employs the STP mechanism presented
above. Two populations of neurons — both similarly stimulated
externally with Poisson spike trains — are randomly connected
obeying simple probability distributions (see below). Connections
within the populations are depressing, while bridging connec-
tions are facilitating. Thus, if excitatory network activity rises,
further excitation is reduced while inhibitory activity is facilitated.
Inversely, in case of a low average firing rate, the network sustains
excitatory activity.

Sussillo et al. (2007) studied the dynamics of this architecture
for sparsely connected networks of 5000 neurons through exten-
sive computer simulations of leaky integrate-and-fire neurons and
mean field models. In particular, they examined how the network
response depends on the mean value and the variance of a Gaussian
distributed current injection. It was shown that such networks are
capable of adjusting their activity to a moderate level of approxi-
mately 5-20 Hz over a wide range of stimulus parameters while
preserving the ability to respond to changes in the external input.
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FIGURE 2 | Schematic of the self-adjusting network architecture
proposed in Sussillo et al. (2007). Depressing (dep) and facilitating (fac)
recurrent synaptic connections level the network activity.

Applied parameters

With respect to the constraints described in Section “Hardware
Constraints”, we set up recurrent networks comprising 192 con-
ductance-based leaky integrate-and-fire point neurons, 144 (75%)
of which were chosen to be excitatory, 48 (25%) to be inhibitory.
Besides feedback from recurrent connections, each neuron was
externally stimulated via excitatory and inhibitory Poisson spike
sources. The setup of recurrent connections and external stimula-
tion is described in detail below.

All parameters specifying the networks are listed in Table 1. Most
values are modeled by a bound normal distribution which is defined by
its mean i, its standard deviation 6 and a bound 7: The random value
xis drawn from a normal distribution N(1,6?). If xexceeds the bounds,
it is redrawn from a uniform distribution within the bounds.

In case of hardware emulations, some of the deviations ¢ only
reflect chip-inherent variations, i.e., fluctuations that remain when
all units are intended to provide equal values. For other parameters —
namely for all synaptic efficacies w, the leakage conductance g, and
the input firing rate Vi ™ the major fraction of the deviations ¢ was
intentionally applied by the experimenter. If present, the variations
of hardware parameters are based on Briiderle et al. (2009).

In case of software simulations, all inhomogeneities are treated
as independent statistical variations. Especially, systematic effects,
like the load-dependency of the excitatory synaptic efficacy or
the unbalanced sensitivity between the neuron populations (see
“Self-Adjustment Ability”), have not been modeled during the
first simulation series.

Recurrent connections. Any two neurons are synaptically connected
with probability p . and weight w . These values depend
only on the populations the pre- and post-synaptic neurons are
part of.

Synaptic weights always refer to the strength of static synapses.
When a synapse features STP, its weight is multiplicatively adjusted
such that the strengths of static and dynamic synapses match at
a constant regular pre-synaptic firing of 20 Hz for ¢ — eco. This
adjustment is necessary in order to enable dynamic synapses to
be both stronger or weaker than static synapses according to their
current activity.

Although the connection probabilities and synaptic weights used
for the experiments do not rely on biological measurements or
profound theoretical studies, they follow some handy rules. The
mean values of the probability distributions are determined by
three principles:

1. Every neuron has as many excitatory as inhibitory recurrent
input synapses: p N, =p_ -N.
2. Inhibitory neurons receive twice as many recurrent synaptic
inputsas excitatory neurons. This enables them to sense the state
of the network on a more global scale: p. ‘N =2.p N .
N X R i,pre = pre e,pre ~ pre
3. Assuming a uniform global firing rate of 20 Hz and an ave-
rage membrane potential of V=—-60 mV, synaptic currents are

well-balanced in the following terms:

(a) For each neuron the excitatory and inhibitory currents
have equal strength,

(b) each excitatory neuron is exposed to as much synaptic
current as each inhibitory neuron.

Formally, we examine the average current induced by a popula-
tion pre to a single neuron of the population post:
|E -V

< p ‘N _-w
post,pre post,pre pre post,pre pre

Principle 3 demands that Lo 1 equal for all tuples (post, pre)
under the mentioned conditions. Given the sizes of the populations
and the reversal potentials, the Principles 1 and 2 determine all
recurrent connection probabilitiesp - andweightsw__except
for two global multiplicative parameters: one scaling all recurrent
connection probabilities, the other one all recurrent weights. While
theratiosofallp aswellastheratiosofthew = arefixed,the
scaling factors have been chosen such that the currents induced by
recurrent synapses exceed those induced by external inputs in order
to highlight the functioning of the applied architecture.

External stimulation. In order to investigate the modulation of
activity by the network, external stimulation of different strength
should be applied. One could think of varying the total incoming
spike rate or the synaptic weights of excitation and inhibition. In
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order to achieve a biologically realistic setup, one should choose
the parameters such that the stimulated neurons will reach a high-
conductance state (see Destexhe et al., 2003; Kaplan et al., 2009).
Neglecting the influence of recurrent connections and membrane
resets after spiking, the membrane would tune in to an average
potential y, superposed by temporal fluctuations .

As mentioned above, the FACETS Stage 1 Hardware suffers
from a small number of input channels if 2 X 192 synapse drivers
are reserved for recurrent connections. At the same time, even
resting neurons exhibit a very short membrane time constant
of T =5 ms. Due to these limitations, we needed to apply
an alternative type of stimulation to approximate appropriate
neuronal states:

Regarding the dynamics of a conductance-based leaky inte-
grate-and-fire neuron, the conductance course toward any reversal
potential can be split up into a time-independent average value and
time-dependent fluctuations with vanishing mean. Then, the aver-
age conductances toward all reversal potentials can be combined
to an effective resting potential and an effective membrane time
constant (Shelley et al., 2002). In this framework, only the fluctua-
tions remain to be modeled via external stimuli.

From this point of view, the hardware neurons appear to be
in a high-conductance state with an average membrane potential
u, = V_, without stimulation due to the short membrane time
constant T__. Ex post, the available input channels can be used to
add fluctuations. The magnitude 6, of the fluctuations is adjusted
via the synaptic weights of the inputs.

Throughout all simulations and emulations, 32 of the 64 input
channels were used for excitatory stimulation, the remaining 32
input channels for inhibitory stimulation. Each neuron was con-
nected to four to six excitatory and four to six inhibitory inputs
using static synapses. The number of inputs was randomly drawn
from a uniform distribution for each neuron and reversal potential.
The synaptic weights of the connections were drawn from bound
normal distributions. The mean value of these distributions was
chosen such that the average traction w-(E_ — p,) was equal for
excitatory and inhibitory synapses. The values listed in Table 1 refer
top,=V_ =-60 mV.In case of other resting potentials, the synaptic
weights were properly adjusted to achieve an equal average current
toward the reversal potentials: In case of excitatory inputs the weight
wassettow, -I[E —(-60mV)]/E ~V _I|.Similarly,inhibitoryinput

weights we}“ep’;djusted tow, CI[E— (=60 mV)]/E—-V_|

Thus, neglecting the influence of recurrent connections and
resets of the membrane after APs, the average input-induced
membrane potential u, always equals V_ . The magnitude of the
fluctuations was controlled via a multiplicative weight factor W.

input
affecting all input synapses. '

MEASUREMENT
In order to study the self-adjustment capabilities of the setup, three
types of networks were investigated:

— unconnected All recurrent synapses were discarded (w = 0) in
order to determine the sole impact of external stimulation.

— dynamic All recurrent synapses featured STP. The mode (facili-
tating, depressing) depended on the type of the connection as
shown in Figure 2.

— static The STP-mechanism was switched off in order to study
the relevance of STP for the self-adjustment ability.

Rather than on the analysis of the dynamics of a specific network,
we aimed at the investigation of the universality of application of
the examined network architecture.

Therefore, random networks were generated obeying the above
described probability distributions. Besides the three fundamen-
tally different network types (unconnected, dynamic and static),
external stimulation of different strength was applied by sweeping
both the average membrane potential V. and the magnitude of
fluctuations W,__ .

For every set of network and input parameters, n = 20 net-
works and input patterns were generated and run for T, =4.5s.
The average firing rates of both populations of neurons were
recorded. To exclude transient initialization effects, only the
time span 1s < t< T_ was evaluated. Networks featuring the
self-adjustment property are expected to modulate their activ-
ity to a medium level of about 5-20 Hz over a wide range of
external stimulation.

This setup was both emulated on the FACETS Stage 1 Hardware
system and simulated using PCSIM in order to verify the results.

RESULTS

First we present the results of the hardware emulation and com-
pare them with the properties of simulated networks. Beside the
capability of adjusting network activity in principle, we examine to
what extent the observed mechanisms are insusceptible to changes
in the hardware substrate. Finally we take a look at the ability of
such networks to process input streams.

SELF-ADJUSTMENT ABILITY

The results of the hardware emulation performed according to the
setup description given in Sections “Network Configuration” and
“Measurement” are shown in Figure 3. The axes display different
input strengths, controlled by the average membrane potential V.,
and the magnitude of fluctuation W, . Average firing rates are
indicated by the shade of gray of the respective tile.

The average response of networks without recurrent connections
is shown in Figure 3A. Over a wide range of weak stimulation (lower
left corner) almost no spikes occur within the network. For stronger
input, the response steadily rises up to v = 29 Hz. In Figure 3D the
activity of the excitatory and the inhibitory population are com-
pared. Since external stimulation was configured equally for either
population, one expects a similar response v, _—v, =0, except for
slight stochastic variations. Obviously, the used hardware device
exhibits a strong and systematic discrepancy of the sensitivity
between the populations, which were located on different halves
of the chip. The mean firing rate of excitatory neurons is about
three times as high as the response of inhibitory neurons.

The mid-column — Figures 3B,E — shows the response of recur-
rent networks featuring dynamic synapses with the presented STP
mechanism. Over a wide range of stimulation, the mean activity
is adjusted to a level of 9—15 Hz. A comparison to the solely input
driven setup proves that recurrent networks with dynamic synapses
are capable of both raising and lowering their activity toward a
smooth plateau. A closer look at the firing rates of the populations
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FIGURE 3 | Results of the emulations on the FACETS Stage 1 Hardware.
External stimulation of diverse strength is controlled via V,_ and W, _ . For every tile,
20 randomly connected networks with new external stimulation were generated.
The resulting average firing rates are illustrated by different shades of gray. Inevitably,
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types of recurrent synapses. (A,D) Solely input driven networks without recurrent
connections. (B,E) Recurrent networks with dynamic synapses using short-term
plasticity. (C,F) Recurrent networks with static synapses. VERTICAL: Mean activity of
the entire network (A=C) and the balance of the populations, measured by the
difference between the mean excitatory and inhibitory firing rates (D-F).

reveals the underlying mechanism: In case of weak external stim-
ulation, excitatory network activity exceeds inhibition, while the
effect of strong stimuli is attenuated by intense firing of inhibitory
neurons. This functionality agrees with the concept of depress-
ing interior and facilitating bridging connections, as described in
Section “Network Architecture”.

In spite of the disparity of excitability between the popula-
tions, the applied setup is capable of properly adjusting network
activity. It is noteworthy that the used connection probabilities
and synaptic weights completely ignored this characteristic of the
underlying substrate.

To ensure that the self-adjustment ability originates from short-
term synaptic plasticity, the STP-mechanism was switched off
during a repetition of the experiment. The respective results for
recurrent networks using static synapses are shown in Figures 3C,F.
The networks clearly lack the previously observed self-adjustment
capability, but rather tend to extreme excitatory firing. It must be
mentioned that such high firing rates exceed the readout bandwidth
of the current FACETS Stage 1 Hardware system. Thus, an unknown
amount of spike events was discarded within the readout circuitry
of the chip. The actual activity of the networks is expected to be
even higher than the measured response.

COMPARISON TO PCSIM

While the results of the hardware emulation draw a self-

consistent picture, it ought to be excluded that the observed self-

adjustment arises from hardware-specific properties. Therefore,
the same setup was applied to the software simulator PCSIM.

The results of the software simulation are shown in Figure 4.

The six panels are arranged like those of the hardware results

in Figure 3.

In agreement with the hardware emulation, the average
response of networks without recurrent connections rises
with stronger stimulation, see Figure 4A. But as the disparity
in the population excitability was not modeled in the simula-
tion, their balance is only subject to statistical variations, see
Figure 4D.

Generally, the software simulation yields significantly higher fir-
ing rates than the hardware emulation. Two possible causes are:

+ The load-dependency of the excitatory synaptic efficacy (see
Hardware Constraints) certainly entails reduced network acti-
vity in case of the hardware emulation.

+ The response curve of hardware neurons slightly differs
from the behavior of an ideal conductance-based LIF model
(Briiderle, 2009, Figure 6.4).
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FIGURE 4 | Results of the software simulation. The experimental setup and
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response is more stable against different strengths of stimulation and all firing
rates are higher. Accordingly, in case of dynamic recurrent synapses, the plateau
islocated atv, =17 Hz.

Consistently, an increased activity is also observed in the simu-
lations of recurrent networks. Figures 4B,E show the results for
networks with synapses featuring short-term synaptic plasticity.
Obviously, the networks exhibit the expected self-adjustment abil-
ity. But the plateau is found at approximately 17 Hz compared to
12 Hz in the hardware emulation. Finally, in case of static recurrent
synapses — see Figures 4C,F — the average network activity rises up
to 400 Hz and lacks any visible moderation.

In conclusion, the hardware emulation and the software
simulation yield similar results regarding the basic dynamics.
Quantitatively, the results differ approximately by a factor of 2.

In order to approximate the influence of the unstable excitatory
synaptic efficacy, which is suspected to be the leading cause for
the inequality, the excitatory reversal potential was globally set to
E =-20mV duringa repetition of the software simulation. Indeed,
the results of the different back-ends become more similar. The
average activity of networks with dynamic synapses (corresponding
to Figures 3B and 4B) is shown in Figure 5.

Due to the obviously improved agreement, all further software
simulations have been performed with a lower excitatory reversal
potential E, =20 mV.

ROBUSTNESS

We show that the observed self-adjustment property of the network
architecture provides certain types of activity robustness that are
beneficial for the operation of neuromorphic hardware systems.

VVinput

5 32
4 24
3 16
2 8
1 63 61 59 57 55

V;est [mV]

FIGURE 5 | Software simulation: Lower excitatory reversal potential.
Average network response of recurrent networks with dynamic synapses. In
order to approximate the load-dependency of the excitatory synaptic efficacy
in the chip, E, was set to 20 mV for subsequent software simulations.
Compare with Figure 3B.

Reliable and relevant activity regimes

By applying the network architecture presented in Section “Network
Architecture”, we aim at the following two kinds of robustness of
network dynamics:

A high reliability of the average network activity, indepen-
dent of the precise individual network connectivity or sti-
mulation pattern. All networks with dynamic synapses that
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are generated and stimulated randomly, but obeying equal
probability distributions, shall yield a similar average firing
ratev .

* The average firing rate v, shall be kept within a biologically
relevant range for a wide spectrum of stimulation strength and
variability. For awake mammalian cortices, rates in the order
of 5-20 Hz are typical (see, e.g., Baddeley et al., 1997; Steriade,
2001; Steriade et al., 2001).

The emergence of both types of robustness in the applied network
architecture is first tested by evaluating the PCSIM data. Still, it is not
a priori clear that the robustness is preserved when transferring the
self-adjusting paradigm to the hardware back-end. The transistor-
level variations discussed in Section “Hardware Constraints” might
impede the reliability of the moderating effects, e.g., by causing an
increased excitability for some of the neurons, or by too heteroge-
neous characteristics of the synaptic plasticity itself. Therefore, the
robustness is also tested directly on a hardware device and the results
are compared with those of the software simulation.

While each tile in Figure 3 represents the averaged overall fir-
ing rate v, of 20 randomly generated networks and input pat-
terns, Figure 6 shows the standard deviation 6, of the activity of
networks obeying equal probability distributions as a function of
V.- Networks using dynamic synapses are marked by triangles,
those with static synapses by circles. Only setups with v >1Hz
are shown.

For both the hardware device and the software simulation,
the data clearly show that the required robustness effects are
achieved by enabling the self-adjusting mechanism with dynamic
synapses. The fluctuation 6, from network to network is signifi-
cantly lower for networks that employ dynamic recurrent con-
nections. Moreover, only for dynamic synapses the average firing
ratev,_  isreliably kept within the proposed regime, while in case
of static synapses most of the observed rates are well beyond its
upper limit.

This observation qualitatively holds both for the hardware
and for the software data. In case of networks with static syn-
apses emulated on the hardware system, the upper limit of
observed firing rates at about 100 Hz is determined techni-
cally by bandwidth limitations of the spike recording circuitry.
This also explains the dropping variation o, for firing rates
close to that limit. If many neurons fire at rates that exceed
the readout bandwidth, the diversity in network activity will
seemingly shrink.

While the software simulation data prove that the self-adjusting
principle provides the robustness features already for networks as
small as those tested, the hardware emulation results show that
the robustness is preserved despite of the transistor-level varia-
tions. Even though the different biological network descriptions are
mapped randomly onto the inhomogeneous hardware resources,
the standard deviation of firing rates is similar in hardware and
in software.
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FIGURE 6 | Reliable and realistic network activity. Each point is determined
by 20 random networks generated from equal probability distributions. The
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Independence of the emulation device

Besides the ambiguous mapping of given biological network
descriptions to an inhomogeneous neuromorphic hardware system
as discussed above, the choice of the particular emulation device
itself imposes another source of possible unreliability of results.
Often, multiple instances of the same system are available to an
experimenter. Ideally, such chips of equal design should yield iden-
tical network dynamics. But due to process-related inhomogeneities
and due to the imperfections as discussed in Section “Hardware
Constraints”, this objective is unachievable in terms of precise spike
timing whenever analog circuitry is involved. Nevertheless, one
can aim for a similar behavior on a more global scale, i.e., for alike
results regarding statistical properties of populations of neurons.

All previous emulations have been performed on a system which
was exclusively assigned to the purpose of this work. In order to
investigate the influence of the particular hardware substrate, a dif-
ferent randomly chosen chip was set up with the same biological
configuration. In this context, biological configuration denotes that
both systems had been calibrated for general purpose. The high-level
pyNN-description of the experiment remained unchanged — only
the translation of biological values to hardware parameters involved
different calibration data. This customization is performed auto-
matically by low-level software structures. Therefore, the setup is
identical from the experimenter’s point of view.

In the following, the two devices will be referred to as primaryand
comparative, respectively. Just as on the primary device, networks
emulated on the comparative system featured the self-adjustment
ability if dynamic synapses were used for recurrent connections. But
network activity was moderated to rather low firing rates of 2—6 Hz.
The response of networks without recurrent connections revealed
that the used chip suffered from a similar disparity of excitability as
the primary device. But in this case, it was the inhibitory population
which showed a significantly heightened responsiveness.

Apparently, the small networks were not capable of completely
compensating for the systematic unbalance of the populations.
Nevertheless, they still were able to both raise and lower their fir-
ing rate compared to input-induced response. Figure 7 shows the
difference of the activity between recurrent networks with short-
term synaptic plasticity and solely input driven networks without
recurrent connections,

Av =

- Vtotal,dyn - thal,input'

For this chart, the V  — W, _ diagonal of Figure 3 has been
mapped to the x-axis, representing an increasing input strength.
Av is plotted on the y-axis. Independent of the used back-end,
recurrent networks raise activity in case of weak external excitation,
while the effect of strong stimulation is reduced.

To allow for the inverse disparity of excitability of the com-
parative device, the mapping of the excitatory and the inhibitory
population, which were located on different halves of the chip, was
mirrored during a repetition of the emulation. Thus, the excita-
tory population exhibited an increased responsiveness resembling
the disparity of the primary device. The Av-curve of the mirrored
repetition on the comparative system can also be found in Figure 7.
As expected, with this choice of population placing, the moderating
effect of the applied self-adjusting paradigm matches better the
characteristics of the primary device.
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FIGURE 7 | Self-adjusting effect on different platforms. The difference
AV =V ™ Vit is plotted against an increasing strength and variability
of the external network stimulation. The diamond symbols represent the data
acquired with PCSIM. The square (circle) symbols represent data measured
with the primary (comparative) hardware device. Measurements with the
comparative device, but with a mirrored placing of the two network
populations, are plotted with triangle symbols. See main text for details.

These observations suggest that differing emulation results
rather arise from large-scaled systematic inhomogeneities of the
hardware substrate than from statistically distributed fixed pattern
noise of individual units.

Therefore, it can be stated that the applied architecture is capable
of reliably compensating statistical fluctuations of hardware unit
properties, unless variations extend to a global scale. But even in
case of large-scale deviations, the applied construction principle
preserves its self-adjustment ability and provides reproducible net-
work properties, albeit at a shifted working point.

RESPONSIVENESS TO INPUT

While it was shown that the applied configuration provides a well-
defined network state in terms of average firing rates, it remains
unclear whether the probed architecture is still able to process
information induced by external input. It can be suspected that
the strong recurrent connectivity “overwrites” any temporal struc-
ture of the input spike trains. Yet, the usability of the architecture
regarding a variety of computational tasks depends on its respon-
siveness to changes in the input. A systematic approach to settle
this question exceeds the scope of this work. Therefore, we address
the issue only in brief.

First, we determine the temporal response of the architecture
to sudden changes in external excitation. Then, we look for traces
of previously presented input patterns in the current network state
and test whether the networks are capable of performing a non-
linear computation on the meaning assigned to these patterns.

For all subsequent simulations the input parameters are set
toV  =-59mVand W, = 4.0 (cf. Figure 5). Only networks
featuring dynamic recurrent connections are investigated. Due to
technical limitations of the current hardware system as discussed
in Section “Hardware Constraints”, the results of this section are

Frontiers in Computational Neuroscience

www.frontiersin.org

October 2010 | Volume 4 | Article 129 | 11



Bill et al.

Compensating hardware-inhomogeneities via STP

based on software simulations, only. For example, the additional
external stimulation, as applied in the following, exceeds the current
input bandwidth of the prototype hardware device. Furthermore,
the evaluation of network states requires access to (at least) the
spike output of all neurons, simultaneously. The current hardware
system only supports the recording of a small subset of neurons
at a time.

In Figure 8A the average response of the excitatory and inhibi-
tory populations to increased external excitation are shown. For this
purpose, the firing rate of all excitatory Poisson input channels was
doubled from 11.8 to 23.6 Hz at t = 4 s. It was reset to 11.8 Hz at
t=7s,1.e.,the applied stimulation rate was shaped as a rectangular
pulse. In order to examine the average response of the recurrent
networks to this steep differential change in the input, n__= 1000
networks and input patterns have been generated. While the net-
work response obtained from a single simulation run is subject to
statistical fluctuations, the influence of the input pulse is revealed
precisely by averaging over the activity of many different networks.
For analysis, the network response was convolved with a box filter
(50 ms window size). In conclusion, the temporal response of the
recurrent networks is characterized by two obvious features:

1. Immediately after the additional input is switched on or off,
the response curves show distinct peaks which decay at a time
scale of T= 100 ms.

2. After some hundred milliseconds, the networks level off at a
new equilibrium. Due to the self-adjustment mechanism, the
activity of the inhibitory population clearly increases.

These findings confirm that the investigated networks show a
significant response to changes in the input. This suggests that
such neural circuits might be capable of performing classifica-
tion tasks or continuous-time calculations if a readout is attached
and trained.

We tested this conjecture by carrying out a computational test
proposed in Haeusler and Maass (2007). The 64 external input
channels were assigned to two disjunct streams A and B. Each
stream consisted of 16 excitatory and 16 inhibitory channels. For
each stream two Poisson spike train templates (referred to as +s
and —s,S € {A,B}) lasting for 2400 ms were drawn and partitioned
to 24 segments *s,7 of 100 ms duration. In every simulation run
the input was randomly composed of the segments of these tem-
plates, e.g.,

Stream A: +

a5 a2 Tar T a0
Stream B: — _ +

leading to 2% chz)sssflzazle inlf)lut gJatterns for either stream. Before the
input was presented to the network, all spikes were jittered using
a Gaussian distribution with zero mean and standard deviation
1 ms. The task was to identify the last four segments presented
(0 <7< 3) at the end of the experiment. For that purpose, the
spike response of the network was filtered with an exponential
decay kernel (T, =T =30 ms). The resulting network state at
t = 2400 ms was presented to linear readout neurons which were
trained via linear regression as in Maass et al. (2002). The train-
ing was based on 1500 simulation runs. Another 300 runs were
used for evaluation. In order to determine the performance of the
architecture for this retroactive pattern classification task, the above
setup was repeated 30 times with newly generated networks and
input templates.

The average performance of networks with recurrent dynamic
synapses is shown in Figure 8B. The error bars denote the stand-
ard error of the mean. Obviously, the network state at = 2400 ms
contains significant information on the latest patterns presented
and preserves traces of preceding patterns for some hundred
milliseconds. For comparison, recurrent networks using static
synapses performed only slightly over chance level (not shown).
In addition to the pattern classification task, another linear rea-
dout neuron was trained to compute the non-linear expression
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FIGURE 8 | Network traces of transient input. Results of software simulations
testing the response of recurrent networks with dynamic synapses to transient
input. (A) Firing rate of the excitatory input channels and average response of
either population to an excitatory input pulse lasting for 3 s. The steep differential
change in excitation is answered by a distinct peak. After some hundred
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milliseconds the networks attune to a new level of equilibrium. (B) Average
performance of the architecture in a retroactive pattern classification task. The
network states contain information on input spike patterns which were
presented some hundred milliseconds ago. The latest patterns presented are to
be processed in a non-linear XOR task.
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XOR(%,,%,) from the network output. Note that this task can-
not be solved by a linear readout operating directly on the input
spike trains.

Summing up, the self-adjusting recurrent networks are able to
perform multiple computational tasks in parallel. Since the main
objective of this work was to verify the self-adjustment ability of
small networks on a neuromorphic hardware device, both connec-
tion probabilities and synaptic weights of recurrent connections
had been chosen high compared to the strength of external stimu-
lation. Still, the networks significantly respond to changes in the
input and provide manifold information on present and previous
structure of the stimulus.

Recent theoretical work (Buesing et al., 2010) stressed that the
computational power of recurrent networks of spiking neurons
strongly depends on their connectivity structure. As a general rule,
it has been shown to be beneficial to operate a recurrent neural net-
work in the edge-of-chaos regime (Bertschinger and Natschliger,
2004). Nevertheless, as addressed in Legenstein and Maass (2007),
the optimal configuration for a specific task can differ from this
estimate. Accordingly, task-dependent recurrent connectivity
parameters might be preferable to achieve good experimental
results (see, e.g., Haeusler et al., 2009). While networks of ran-
domly connected neurons feature favorable kernel qualities, i.e.,
they perform rich non-linear operations on the input, theoretical
studies of Ganguli et al. (2008) prove that networks with hidden
feedforward structures provide superior memory storage capabili-
ties. Future research might identify such connectivity patterns in
seemingly random cortical circuits and improve our understanding
of working memory.

While the examined recurrent network architecture was not
optimized for computation, neither regarding its kernel quality nor
its memory traces, the cited studies suggest that the performance
will increase if network parameters are attuned to particular tasks.
Further research is needed to explore under which conditions the
examined architecture provides a stable operating point, a high
responsiveness to stimuli, and appropriate memory traces.

DISCUSSION

We showed that recurrent neural networks featuring short-term
synaptic plasticity are applicable to present neuromorphic mixed-
signal VLSI devices. For the first time dynamic synapses play a
functional role in network dynamics during a hardware emulation.
Since neuromorphic hardware devices model neural information
processing with analog circuitry, they generally suffer from process-
related fluctuations which affect the dynamics of their components.
In order to minimize the influence of unit variations on emulation
results, we applied a self-adjustment principle on a network level
as proposed by Sussillo et al. (2007).

Even though the employed prototype system only supports a
limited network size, the expected self-adjustment property was
observed on all used back-ends. The biological description of the
experimental setup was equal for all utilized chips, i.e., the configu-
ration was not customized to characteristics of the specific hardware
system. Beyond the validation of the basic functioning of the self-
adjusting mechanism, we addressed the robustness of the construc-
tion principle against both statistical variations of network entities
and systematic disparities between different chips. We showed that

the examined architecture reliably adjusts the average network
response to a moderate firing regime. While congeneric networks
emulated on the same chip yielded a widely similar behavior, the
operating point achieved on different systems still was affected by
large-scale characteristics of the utilized back-end.

All outcomes of the hardware emulation were qualitatively con-
firmed by software simulations. Furthermore, the influence of a major
imperfection of the current revision of the FACETS Stage 1 Hardware,
the load-dependency of the excitatory synaptic efficacy, was studied
by the accompanying application of the simulator PCSIM.

Presumably, the performance of the applied architecture will
improve with increasing network size. Upcoming neuromorphic
emulators like the FACETS Stage 2 Wafer-scale Integration system
(see Fieres et al., 2008; Schemmel et al., 2008) will comprise more
than 100,000 neurons and millions of synapses. Even earlier, the
present chip-based system will sustain the interconnection of mul-
tiple chips and thus provide a substrate of some thousand neurons.
As such large-scale mixed-signal VLSI devices will inevitably exhibit
variations in unit properties, detailed knowledge of circuitry design
is required by the user to reduce distortions of experimental results
on thelevel of single units. On the other hand, the beneficial applica-
tion of neuromorphic VLSI devices as both neuroscientific modeling
and novel computing tools will require that it does not demand an
expert in electronic engineering to run the system. We showed that
self-regulation properties of neural networks can help to overcome
disadvantageous effects of unit level variations of neuromorphic
VLSI devices. The employed network architecture might ensure a
highly similar network behavior independent of the utilized system.
Therefore this work displays an important step toward a reliable and
practicable operation of neuromorphic hardware.

The applied configuration required strong recurrent synapses
at a high connectivity. The results of Sussillo et al. (2007) show
that even sparsely connected networks can manage to efficiently
adjust their activity, provided they comprise a sufficiently large
number of neurons which will be sustained by future hardware
systems. Thereby, the examined construction principle will become
applicable to a variety of experimental setups and network designs.
As touched upon in Section “Responsiveness to Input”, the pre-
sented self-adjusting networks still are sensitive and responsive to
changes in external excitation. Furthermore, we verified that even
networks with disproportionately strong recurrent synapses can
perform simple non-linear operations on transient input streams.
By applying biologically more realistic connectivity parameters, it
has been shown that randomly connected networks of spiking neu-
rons are able to accomplish ambitious computational tasks (Maass
etal.,2004) and that short-term synaptic plasticity can improve the
performance of such networks in neural information processing
(Maass et al., 2002). Thus, this architecture provides a promising
application for neuromorphic hardware devices while the high
configurability of novel systems as well supports the emulation of
circuits tailored to specific tasks.
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