This work was supported by the Spanish Government (Grant No. TIN2013-47276-C6-1-R) and by the Catalan Government (Grant No. 2014-SGR-1232).
Data were provided, in part, by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.
[1] O. Sporns, G. Tononi, R. Kötter, The human connectome: a structural description of the human brain, PLoS Comput. Biol. 1 (2005) e42. doi:10.1371/journal.pcbi.0010042.
[2] P. Hagmann, From diffusion MRI to brain connectomics, EPFL, 2005.
[3] P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V.J. Wedeen, R. Meuli, et al., Mapping human whole-brain structural networks with diffusion MRI, PLoS One. 2 (2007) e597. doi:10.1371/journal.pone.0000597.
[4] P. Hagmann, L. Cammoun, X. Gigandet, S. Gerhard, P.E. Grant, V.J. Wedeen, et al., MR connectomics: principles and challenges, J. Neurosci. Methods. 194 (2010) 34–45. doi:10.1016/j.jneumeth.2010.01.014.
[5] O. Sporns, The human connectome: origins and challenges, Neuroimage. 80 (2013) 53–61. doi:10.1016/j.neuroimage.2013.03.023.
[6] E.T. Bullmore, D.S. Bassett, Brain graphs: graphical models of the human brain connectome, Annu. Rev. Clin. Psychol. 7 (2011) 113–140. doi:10.1146/annurev-clinpsy-040510-143934.
[7] O. Sporns, The human connectome: a complex network, Ann. N. Y. Acad. Sci. 1224 (2011) 109–125. doi:10.1111/j.1749-6632.2010.05888.x.
[8] G.-R. Wu, W. Liao, S. Stramaglia, J.-R. Ding, H. Chen, D. Marinazzo, A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data, Med. Image Anal. 17 (2013) 365–374.
[9] M. Kaiser, A tutorial in connectome analysis: topological and spatial features of brain networks, Neuroimage. 57 (2011) 892–907. doi:10.1016/j.neuroimage.2011.05.025.
[10] M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and interpretations, Neuroimage. 52 (2010) 1059–1069. doi:10.1016/j.neuroimage.2009.10.003.
[11] C.J. Stam, J.C. Reijneveld, Graph theoretical analysis of complex networks in the brain, Nonlinear Biomed. Phys. 1 (2007) 3. doi:10.1186/1753-4631-1-3.
[12] D.J. Watts, S.H. Strogatz, Collective dynamics of “small-world” networks, Nature. 393 (1998) 409–410. doi:10.1038/30918.
[13] V. Latora, M. Marchiori, Efficient behavior of small-world networks, Phys. Rev. Lett. 87 (2001) 198701. doi:10.1103/PhysRevLett.87.198701.
[14] M.E.J. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003) 167–256. doi:10.1137/S003614450342480.
[15] M.E.J. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev. E. 69 (2003) 5. doi:10.1103/PhysRevE.69.066133.
[16] E.T. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10 (2009) 186–198. doi:10.1038/nrn2575.
[17] L. Cammoun, X. Gigandet, D.E. Meskaldji, J.-P. Thiran, O. Sporns, K.Q. Do, et al., Mapping the human connectome at multiple scales with diffusion spectrum MRI, J. Neurosci. Methods. 203 (2012) 386–397. doi:10.1016/j.jneumeth.2011.09.031.
[18] D.C. Van Essen, K. Ugurbil, E.J. Auerbach, D.M. Barch, T.E.J. Behrens, R. Bucholz, et al., The Human Connectome Project: a data acquisition perspective, Neuroimage. 62 (2012) 2222–2231.
[19] M.F. Glasser, S.N. Sotiropoulos, J.A. Wilson, T.S. Coalson, B. Fischl, J.L.R. Andersson, et al., The minimal preprocessing pipelines for the Human Connectome Project, Neuroimage. 80 (2013) 105–124. doi:10.1016/j.neuroimage.2013.04.127.
[20] M.R. Hodge, W. Horton, T. Brown, R. Herrick, T. Olsen, M. Hileman, et al., ConnectomeDB: sharing human brain connectivity data, Neuroimage. (2015).
[21] M.R. DeWeese, M. Meister, How to measure the information gained from one symbol, Netw. Comput. Neural Syst. 10 (1999) 325–340.