Badcock, N. A., Mousikou, P., Mahajan, Y., de Lissa, P., Thie, J., & McArthur, G. (2013). Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ, 1, e38. doi: 10.7717/peerj.38
Badcock NA, Preece KA, de Wit B, Glenn K, Fieder N, Thie J, McArthur G. (2015)Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ 3:e907. Doi: 10.7717/peerj.907
Bashashati, A., Fatourechi, M., Ward, R. K., & Birch, G. E. (2007). A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. Journal of Neural engineering, 4(2), R32-R57. doi: 10.1088/1741-2560/4/2/R03
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21. Doi: 10.1016/j.jneumeth.2003.10.009
Debener, S., Minow, F., Emkes, R., Gandras, K., & Vos, M. (2012). How about taking a low‐cost, small, and wireless EEG for a walk?. Psychophysiology,49(11), 1617-1621. Doi: 10.1111/j.1469-8986.2012.01471.x
Hairston, W. D. (2012). Accounting for timing drift and variability in contemporary electroencepholography (EEG) systems (Aberdeen Proving Ground, MD: US Army Research Laboratory) Report ARL-TR-5945.
Hairston, W. D., Whitaker, K. W., Ries, A. J., Vettel, J. M., Bradford, J. C., Kerick, S. E., & McDowell, K. (2014). Usability of four commercially-oriented EEG systems. Journal of neural engineering, 11(4), 046018. doi:10.1088/1741-2560/11/4/046018
Gao, S., Wang, Y., Gao, X., & Hong, B. (2014). Visual and auditory brain–computer interfaces. IEEE Transactions on Biomedical Engineering, 61(5), 1436-1447. doi: 10.1109/TBME.2014.2300164
Maskeliunas, R., Damasevicius, R., Martisius, I., & Vasiljevas, M. (2016). Consumer-grade EEG devices: are they usable for control tasks?. PeerJ, 4, e1746. Doi: 10.7717/peerj.1746
Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., & Tormene, A. P. (2010). ISCEV standard for clinical visual evoked potentials (2009 update). Documenta ophthalmologica, 120(1), 111-119. doi: 10.1007/s10633-009-9195-4
Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of neuroscience methods, 162(1), 8-13. Doi: 10.1016/j.jneumeth.2006.11.017.
Ries, A. J., Touryan, J., Vettel, J., McDowell, K., & Hairston, W. D. (2014). A comparison of electroencephalography signals acquired from conventional and mobile systems. Journal of Neuroscience and Neuroengineering, 3(1), 10-20. Doi: 10.1166/jnsne.2014.1092
Suryotrisongko, H., & Samopa, F. (2015). Evaluating OpenBCI Spiderclaw V1 Headwear's Electrodes Placements for Brain-Computer Interface (BCI) Motor Imagery Application. Procedia Computer Science, 72, 398-405. doi: 10.1016/j.procs.2015.12.155
Ultracortex Mark III "Supernova" (n.d.). Retrieved June 22, 2016, from http://openbci.com/
Wang, Y., Gao, X., Hong, B., Jia, C., & Gao, S. (2008). Brain-computer interfaces based on visual evoked potentials. IEEE Engineering in medicine and biology magazine, 27(5), 64-71. doi: 10.1109/MEMB.2008.923958
Yoshimura, N., & Itakura, N. (2011). Usability of Transient VEPs in BCIs. INTECH Open Access Publisher. doi: 10.5772/14171